近年來提出的光突發(fā)交換OBS(Optical.Burst Switching)技術(shù),結(jié)合了光路交換(OCS)與光分組交換(OPS)的優(yōu)點,有效支持高突發(fā)、高速率的多種業(yè)務,成為目前研究的熱點和前沿。 本論文圍繞國家“863”計劃資助課題“光突發(fā)交換關(guān)鍵技術(shù)和試驗系統(tǒng)”,主要涉及兩個方面:LOBS邊緣節(jié)點核心板和光板FPGA的實現(xiàn)方案,重點關(guān)注于邊緣節(jié)點核心板突發(fā)包組裝算法。 本文第一章首先介紹LOBS網(wǎng)絡的背景、架構(gòu),分析了LOBS網(wǎng)絡的關(guān)鍵技術(shù),然后介紹了本論文后續(xù)章節(jié)研究的主要內(nèi)容。 第二章介紹了LOBS邊緣節(jié)點的總體結(jié)構(gòu),主要由核心板和光板組成。核心板包括千兆以太網(wǎng)物理層接入芯片,突發(fā)包組裝FPGA,突發(fā)包調(diào)度FPGA,SDRAM以及背板驅(qū)動芯片($2064)等硬件模塊。光板包括$2064,發(fā)射FPGA,接收FPGA,光發(fā)射機,光接收機,CDR等硬件模塊。論文對這些軟硬件資源進行了詳細介紹,重點關(guān)注于各FPGA與其余硬件資源的接口。 第三章闡明了LOBS邊緣節(jié)點FPGA的具體實現(xiàn)方法,分為核心板突發(fā)包組裝FPGA和光板FPGA兩部分。核心板FPGA對數(shù)據(jù)和描述信息分別存儲,僅對描述信息進行處理,提高了組裝效率。在維護突發(fā)包信息時,實時查詢和更新FEC配置表,保證了對FEE狀態(tài)表維護的靈活性。在讀寫SDRAM時都采用整頁突發(fā)讀寫模式,對MAC幀整幀一次性寫入,讀取時采用超前預讀模式,對SDRAM內(nèi)存的使用采取即時申請方式,十分靈活高效。光板FPGA分為發(fā)射和接收兩個方向,主要是將進入FPGA的數(shù)據(jù)進行同步后按照指定的格式發(fā)送。 第四章總結(jié)了論文的主要內(nèi)容,并對LOBS技術(shù)進行展望。本論文組幀算法采用動態(tài)組裝參數(shù)表的方法,可以充分支持各種擴展,包括自適應動態(tài)組裝算法。
上傳時間: 2013-05-26
上傳用戶:AbuGe
背光板介紹
標簽: 背光板
上傳時間: 2016-04-12
上傳用戶:hewenzhi
LED調(diào)光板設計 設計了8個300mA的調(diào)光板。
標簽: led
上傳時間: 2021-11-20
上傳用戶:
本文提出了一種LED發(fā)光顯示牌的設計方案制作燈箱,其具有無燈絲光源、無逆變器能量消耗和系統(tǒng)直流供電等優(yōu)點。LED發(fā)光顯示牌是LED在照明領域中的 一個重要應用,設計原理基于Notebook的液晶顯示器,是將點光源轉(zhuǎn)換成面光源的科技產(chǎn)品。為增強顯示牌的發(fā)光效果,在設計中還合理地應用到了光學級 PMMA導光板、反射膜和擴散膜等材料,并對它們的特性及其在系統(tǒng)中的作用進行了詳細的理論分析。同時在分析大量實驗數(shù)據(jù)的基礎上,證明了設計方案 的可行性。 系統(tǒng)中的太陽電池、蓄電池、負載LED的優(yōu)化匹配也是一個值得研究的問題。本文從容量、功率匹配等方面對系統(tǒng)進行了優(yōu)化設計。 太陽能發(fā)電和常規(guī)能源發(fā)電不同,它具有隨機不確定性。而這種時變性又增加了系統(tǒng)的不穩(wěn)定性因素。本文根據(jù)課題的要求提出了一種應用于光伏照明 系統(tǒng)的充放電控制器的設計方案,較好地解決了系統(tǒng)中太陽電池輸出能量不穩(wěn)定的缺陷,同時還對蓄電池和負載LED進行各種控制和保護。最后,給出了硬 件電路的設計和軟件算法,并提供了相關(guān)實驗數(shù)據(jù)和波形。
上傳時間: 2013-06-20
上傳用戶:ca05991270
本文提出一種基于PC104嵌入式工業(yè)控制計算機與現(xiàn)場可編程門陣列(FPGA)的PCB測試機的硬件控制系統(tǒng)設計方案。方案中設計高效高壓控制電路,實現(xiàn)測試電壓與測試電流的精確數(shù)字控制。選用雙高壓電子開關(guān)形式代替高壓模擬電子開關(guān),大幅度提高測試電壓。采用多電源方式在低控制電壓下實現(xiàn)對高壓電子開關(guān)的控制。設計高速信號處理電路對測試信號進行處理,從硬件上提高系統(tǒng)測試速度。 本設計中選用Altera公司的現(xiàn)場可編程器(FPGA)EP1K50,利用EDA設計工具Synplify、Modelsim、QuartusⅡ以及Verilog硬件描述語言完成了控制系統(tǒng)的硬件設計及調(diào)試,解決了由常規(guī)電路難以實現(xiàn)的問題。
上傳時間: 2013-06-04
上傳用戶:lizhen9880
LED旋轉(zhuǎn)顯示器時基于視覺暫留原理,開發(fā)的一種旋轉(zhuǎn)式LED顯示屏。其在具有一定轉(zhuǎn)速地載體上安裝16個LED發(fā)光器件,各LED發(fā)光管等間距排位一條直線,隨著旋轉(zhuǎn)速度的加快,在計算機軟件精確的時序控制下,不斷掃描出預設的文字,圖案等。使用一個光耦(U型槽的紅外對管)作為定位傳感器,當旋轉(zhuǎn)一周時,擋光板遮擋光源,光敏三極管的集電極輸出高電平,當離開擋光板時,集電極再次輸出低電平,從而給單片機一個下降沿的跳變型號,產(chǎn)生一個中斷,從而更新顯示。供電部分,因為整個裝置是在不停的高速旋轉(zhuǎn)當中,所以我們做了一個簡單的電刷裝置,把220V的交流電通過變壓器變成12V的交流電,再由橋式整流電路,和濾波電路,變?yōu)槠交闹绷麟姡詈笸ㄟ^7805芯片輸出我們需要的5V直流電源,通過電刷把電源和指針板上的單片機連接為其供電。而旋轉(zhuǎn)載體因為需要12V的電壓源,所以采用分別供電的方式。
上傳時間: 2013-07-27
上傳用戶:f1364628965
摘要:為提高太陽能的利用率,以AT89S52單片機為控制核心,采取極軸式跟蹤方式,設計了一套以視日運動軌跡跟蹤為主、光電跟蹤進行跟蹤校正的智能型雙精度太陽跟蹤系統(tǒng),該系統(tǒng)通過采集時鐘芯片信息計算當前太陽位置,實現(xiàn)視日運動軌跡跟蹤;同時利用光電傳感器采集的光強偏差控制步進電機,實現(xiàn)光電跟蹤,校正軌跡偏差,保證聚光板與太陽光相垂直。試驗表明,該太陽跟蹤系統(tǒng)能在不同天氣狀況下對太陽進行較準確跟蹤,能量接收效率提高20% 以上,達到了充分利用太陽能的目的。
上傳時間: 2014-12-01
上傳用戶:dysyase
LED旋轉(zhuǎn)顯示器時基于視覺暫留原理,開發(fā)的一種旋轉(zhuǎn)式LED顯示屏。其在具有一定轉(zhuǎn)速地載體上安裝16個LED發(fā)光器件,各LED發(fā)光管等間距排位一條直線,隨著旋轉(zhuǎn)速度的加快,在計算機軟件精確的時序控制下,不斷掃描出預設的文字,圖案等。使用一個光耦(U型槽的紅外對管)作為定位傳感器,當旋轉(zhuǎn)一周時,擋光板遮擋光源,光敏三極管的集電極輸出高電平,當離開擋光板時,集電極再次輸出低電平,從而給單片機一個下降沿的跳變型號,產(chǎn)生一個中斷,從而更新顯示。供電部分,因為整個裝置是在不停的高速旋轉(zhuǎn)當中,所以我們做了一個簡單的電刷裝置,把220V的交流電通過變壓器變成12V的交流電,再由橋式整流電路,和濾波電路,變?yōu)槠交闹绷麟姡詈笸ㄟ^7805芯片輸出我們需要的5V直流電源,通過電刷把電源和指針板上的單片機連接為其供電。而旋轉(zhuǎn)載體因為需要12V的電壓源,所以采用分別供電的方式。
上傳時間: 2013-11-21
上傳用戶:時代電子小智
P C B 可測性設計布線規(guī)則之建議― ― 從源頭改善可測率PCB 設計除需考慮功能性與安全性等要求外,亦需考慮可生產(chǎn)與可測試。這里提供可測性設計建議供設計布線工程師參考。1. 每一個銅箔電路支點,至少需要一個可測試點。如無對應的測試點,將可導致與之相關(guān)的開短路不可檢出,并且與之相連的零件會因無測試點而不可測。2. 雙面治具會增加制作成本,且上針板的測試針定位準確度差。所以Layout 時應通過Via Hole 盡可能將測試點放置于同一面。這樣就只要做單面治具即可。3. 測試選點優(yōu)先級:A.測墊(Test Pad) B.通孔(Through Hole) C.零件腳(Component Lead) D.貫穿孔(Via Hole)(未Mask)。而對于零件腳,應以AI 零件腳及其它較細較短腳為優(yōu)先,較粗或較長的引腳接觸性誤判多。4. PCB 厚度至少要62mil(1.35mm),厚度少于此值之PCB 容易板彎變形,影響測點精準度,制作治具需特殊處理。5. 避免將測點置于SMT 之PAD 上,因SMT 零件會偏移,故不可靠,且易傷及零件。6. 避免使用過長零件腳(>170mil(4.3mm))或過大的孔(直徑>1.5mm)為測點。7. 對于電池(Battery)最好預留Jumper,在ICT 測試時能有效隔離電池的影響。8. 定位孔要求:(a) 定位孔(Tooling Hole)直徑最好為125mil(3.175mm)及其以上。(b) 每一片PCB 須有2 個定位孔和一個防呆孔(也可說成定位孔,用以預防將PCB反放而導致機器壓破板),且孔內(nèi)不能沾錫。(c) 選擇以對角線,距離最遠之2 孔為定位孔。(d) 各定位孔(含防呆孔)不應設計成中心對稱,即PCB 旋轉(zhuǎn)180 度角后仍能放入PCB,這樣,作業(yè)員易于反放而致機器壓破板)9. 測試點要求:(e) 兩測點或測點與預鉆孔之中心距不得小于50mil(1.27mm),否則有一測點無法植針。以大于100mil(2.54mm)為佳,其次是75mil(1.905mm)。(f) 測點應離其附近零件(位于同一面者)至少100mil,如為高于3mm 零件,則應至少間距120mil,方便治具制作。(g) 測點應平均分布于PCB 表面,避免局部密度過高,影響治具測試時測試針壓力平衡。(h) 測點直徑最好能不小于35mil(0.9mm),如在上針板,則最好不小于40mil(1.00mm),圓形、正方形均可。小于0.030”(30mil)之測點需額外加工,以導正目標。(i) 測點的Pad 及Via 不應有防焊漆(Solder Mask)。(j) 測點應離板邊或折邊至少100mil。(k) 錫點被實踐證實是最好的測試探針接觸點。因為錫的氧化物較輕且容易刺穿。以錫點作測試點,因接觸不良導致誤判的機會極少且可延長探針使用壽命。錫點尤其以PCB 光板制作時的噴錫點最佳。PCB 裸銅測點,高溫后已氧化,且其硬度高,所以探針接觸電阻變化而致測試誤判率很高。如果裸銅測點在SMT 時加上錫膏再經(jīng)回流焊固化為錫點,雖可大幅改善,但因助焊劑或吃錫不完全的緣故,仍會出現(xiàn)較多的接觸誤判。
上傳時間: 2014-01-14
上傳用戶:cylnpy
用at89s52單片機控制步進電機實現(xiàn)1/8細分,可用于太陽能充電電池集光板的設計
上傳時間: 2016-11-01
上傳用戶:894898248
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1