對多維的矩陣,做大量矩陣的的計算,來試探實際效能以及處理時間.
標簽: 效能
上傳時間: 2015-03-26
上傳用戶:許小華
求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標簽: gt myfunction function numel
上傳時間: 2014-01-15
上傳用戶:hongmo
求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標簽: gt myfunction function numel
上傳時間: 2013-12-26
上傳用戶:dreamboy36
求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標簽: gt myfunction function numel
上傳時間: 2016-06-28
上傳用戶:change0329
求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標簽: gt myfunction function numel
上傳時間: 2014-09-03
上傳用戶:jjj0202
15.2 已經加入了有關貫孔及銲點的Z軸延遲計算功能. 先開啟 Setup - Constraints - Electrical constraint sets 下的 DRC 選項. 點選 Electrical Constraints dialog box 下 Options 頁面 勾選 Z-Axis delay欄.
上傳時間: 2013-10-08
上傳用戶:王慶才
15.2 已經加入了有關貫孔及銲點的Z軸延遲計算功能. 先開啟 Setup - Constraints - Electrical constraint sets 下的 DRC 選項. 點選 Electrical Constraints dialog box 下 Options 頁面 勾選 Z-Axis delay欄.
上傳時間: 2013-11-12
上傳用戶:Late_Li
Hopfield 網——擅長于聯想記憶與解迷路 實現H網聯想記憶的關鍵,是使被記憶的模式樣本對應網絡能量函數的極小值。 設有M個N維記憶模式,通過對網絡N個神經元之間連接權 wij 和N個輸出閾值θj的設計,使得: 這M個記憶模式所對應的網絡狀態正好是網絡能量函數的M個極小值。 比較困難,目前還沒有一個適應任意形式的記憶模式的有效、通用的設計方法。 H網的算法 1)學習模式——決定權重 想要記憶的模式,用-1和1的2值表示 模式:-1,-1,1,-1,1,1,... 一般表示: 則任意兩個神經元j、i間的權重: wij=∑ap(i)ap(j),p=1…p; P:模式的總數 ap(s):第p個模式的第s個要素(-1或1) wij:第j個神經元與第i個神經元間的權重 i = j時,wij=0,即各神經元的輸出不直接返回自身。 2)想起模式: 神經元輸出值的初始化 想起時,一般是未知的輸入。設xi(0)為未知模式的第i個要素(-1或1) 將xi(0)作為相對應的神經元的初始值,其中,0意味t=0。 反復部分:對各神經元,計算: xi (t+1) = f (∑wijxj(t)-θi), j=1…n, j≠i n—神經元總數 f()--Sgn() θi—神經元i發火閾值 反復進行,直到各個神經元的輸出不再變化。
上傳時間: 2015-03-16
上傳用戶:JasonC
這是一個簡單的小工具,有點類似我們使用form方式設計時,使用behaver方式讓各個form作轉場特效一樣,不過這個工具是針對各個movie clip,相信對一些Art設計師有一定的幫助囉, 使用的是Transition manager方式完成,相信不久會有利用tween class方式的程式產生器吧..其實我還蠻需要的...因為help檔沒有,有時要參考指令,都要上網查一次
上傳時間: 2013-12-17
上傳用戶:hasan2015
點對點資訊分享系統在有線及無線網路上之設計與實作
上傳時間: 2013-12-02
上傳用戶:壞天使kk