亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

三值光

  • 用VHDL編寫的實現(xiàn)二、三、四分頻

    在Quartus II 9.0環(huán)境下編寫的VHDL代碼,實現(xiàn)二分頻、三分頻、四分頻功能。

    標簽: VHDL 編寫 分頻

    上傳時間: 2013-04-24

    上傳用戶:哈哈hah

  • 基于ARM的TimeToCount輻射測量儀的研究

    隨著半導體工藝的飛速發(fā)展和芯片設(shè)計水平的不斷進步,ARM微處理器的性能得到大幅度地提高,同時其芯片的價格也在不斷下降,嵌入式系統(tǒng)以其獨有的優(yōu)勢,己經(jīng)廣泛地滲透到科學研究和日常生活的各個方面。 本文以ARM7 LPC2132處理器為核心,結(jié)合蓋革一彌勒計數(shù)管對Time-To-Count輻射測量方法進行研究。ARM結(jié)構(gòu)是基于精簡指令集計算機(RISC)原理而設(shè)計的,其指令集和相關(guān)的譯碼機制比復(fù)雜指令集計算機要簡單得多,使用一個小的、廉價的ARM微處理器就可實現(xiàn)很高的指令吞吐量和實時的中斷響應(yīng)。基于ARM7TDMI-S核的LPC2132微處理器,其工作頻率可達到60MHz,這對于Time-To-Count技術(shù)是非常有利的,而且利用LPC2132芯片的定時/計數(shù)器引腳捕獲功能,可以直接讀取TC中的計數(shù)值,也就是說不再需要調(diào)用中斷函數(shù)讀取TC值,從而大大降低了計數(shù)前雜質(zhì)時間。本文是在我?guī)熜謪诬姷摹禩ime-To-Count測量方法初步研究》基礎(chǔ)上,使用了高速的ARM芯片,對基于MCS-51的Time-To-Count輻射測量系統(tǒng)進行了改進,進一步論證了采用高速ARM處理器芯片可以極大的提高G-M計數(shù)器的測量范圍與測量精度。 首先,討論了傳統(tǒng)的蓋革-彌勒計數(shù)管探測射線強度的方法,并指出傳統(tǒng)的脈沖測量方法的不足。然后討論了什么是Time-To-Count測量方法,對Time-To-Count測量方法的理論基礎(chǔ)進行分析。指出Time-To-Count方法與傳統(tǒng)的脈沖計數(shù)方法的區(qū)別,以及采用Time-To-Count方法進行輻射測量的可行性。 接著,詳細論述基于ARM7 LPC2132處理器的Time-To-Count輻射測量儀的原理、功能、特點以及輻射測量儀的各部分接口電路設(shè)計及相關(guān)程序的編制。 最后得出結(jié)論,通過高速32位ARM處理器的使用,Time-To-Count輻射測量儀的精度和量程均得到很大的提高,對于Y射線總量測量,使用了ARM處理器的Time-To-Count輻射測量儀的量程約為20 u R/h到1R/h,數(shù)據(jù)線性程度也比以前的Time-To-CotJnt輻射測量儀要好。所以在使用Time-To-Count方法進行的輻射測量時,如何減少雜質(zhì)時間以及如何提高計數(shù)前時間的測量精度,是決定Time-To-Count輻射測量儀性能的關(guān)鍵因素。實驗用三只相同型號的J33G-M計數(shù)管分別作為探測元件,在100U R/h到lR/h的輻射場中進行試驗.每個測量點測量5次取平均,得出隨著照射量率的增大,輻射強度R的測量值偏小且與輻射真實值之間的誤差也隨之增大。如果將測量誤差限定在10%的范圍內(nèi),則此儀器的量程范圍為20 u R/h至1R/h,量程跨度近六個數(shù)量級。而用J33型G-M計數(shù)管作常規(guī)的脈沖測量,量程范圍約為50 u R/h到5000 u R/h,充分體現(xiàn)了運用Time-To-Count方法測量輻射強度的優(yōu)越性,也從另一個角度反應(yīng)了隨著計數(shù)前時間的逐漸減小,雜質(zhì)時間在其中的比重越來越大,對測量結(jié)果的影響也就越來越嚴重,盡可能的減小雜質(zhì)時間在Time-To-Count方法輻射測量特別是測量高強度輻射中是關(guān)鍵的。筆者用示波器測出此輻射儀器的雜質(zhì)時間約為6.5 u S,所以在計算定時器值的時候減去這個雜質(zhì)時間,可以增加計數(shù)前時間的精確度。通過實驗得出,在標定儀器的K值時,應(yīng)該在照射量率較低的條件下行,而測得的計數(shù)前時間是否精確則需要在照射量率較高的條件下通過儀器標定來檢驗。這是因為在照射量率較低時,計數(shù)前時間較大,雜質(zhì)時間對測量結(jié)果的影響不明顯,數(shù)據(jù)線斜率較穩(wěn)定,適宜于確定標定系數(shù)K值,而在照射量率較高時,計數(shù)前時間很小,雜質(zhì)時間對測量結(jié)果的影響較大,可以明顯的在數(shù)據(jù)線上反映出來,從而可以很好的反應(yīng)出儀器的性能與量程。實驗證明了Time-To-Count測量方法中最為關(guān)鍵的環(huán)節(jié)就是如何對計數(shù)前時間進行精確測量。經(jīng)過對大量實驗數(shù)據(jù)的分析,得到計數(shù)前時間中的雜質(zhì)時間可分為硬件雜質(zhì)時間和軟件雜質(zhì)時間,并以軟件雜質(zhì)時間為主,通過對程序進行合理優(yōu)化,軟件雜質(zhì)時間可以通過程序的改進而減少,甚至可以用數(shù)學補償?shù)姆椒▉淼窒瑥亩梢缘玫奖容^精確的計數(shù)前時間,以此得到較精確的輻射強度值。對于本輻射儀,用戶可以選擇不同的工作模式來進行測量,當輻射場較弱時,通常采用規(guī)定次數(shù)測量的方式,在輻射場較強時,應(yīng)該選用定時測量的方式。因為,當輻射場較弱時,如果用規(guī)定次數(shù)測量的方式,會浪費很多時間來采集足夠的脈沖信號。當輻射場較強時,由于輻射粒子很多,產(chǎn)生脈沖的頻率就很高,規(guī)定次數(shù)的測量會加大測量誤差,當選用定時測量的方式時,由于時間的相對加長,所以記錄的粒子數(shù)就相對的增加,從而提高儀器的測量精度。通過調(diào)研國內(nèi)外先進核輻射測量儀器的發(fā)展現(xiàn)狀,了解到了目前最新的核輻射總量測量技術(shù)一Time-To-Count理論及其應(yīng)用情況。論證了該新技術(shù)的理論原理,根據(jù)此原理,結(jié)合高速處理器ARM7 LPC2132,對以G-計數(shù)管為探測元件的Time-To-Count輻射測量儀進行設(shè)計。論文以實驗的方法論證了Time-To-Count原理測量核輻射方法的科學性,該輻射儀的量程和精度均優(yōu)于以前以脈沖計數(shù)為基礎(chǔ)理論的MCS-51核輻射測量儀。該輻射儀具有量程寬、精度高、易操作、用戶界面友好等優(yōu)點。用戶可以定期的對儀器的標定,來減小由于電子元件的老化對低儀器性能參數(shù)造成的影響,通過Time-To-Count測量方法的使用,可以極大拓寬G-M計數(shù)管的量程。就儀器中使用的J33型G-M計數(shù)管而言,G-M計數(shù)管廠家參考線性測量范圍約為50 u R/h到5000 u R/h,而用了Time-To-Count測量方法后,結(jié)合高速微處理器ARM7 LPC2132,此核輻射測量儀的量程為20 u R/h至1R/h。在允許的誤差范圍內(nèi),核輻射儀的量程比以前基于MCS-51的輻射儀提高了近200倍,而且精度也比傳統(tǒng)的脈沖計數(shù)方法要高,測量結(jié)果的線性程度也比傳統(tǒng)的方法要好。G-M計數(shù)管的使用壽命被大大延長。 綜上所述,本文取得了如下成果:對國內(nèi)外Time-To-Count方法的研究現(xiàn)狀進行分析,指出了Time-To-Count測量方法的基本原理,并對Time-T0-Count方法理論進行了分析,推導出了計數(shù)前時間和兩個相鄰輻射粒子時間間隔之間的關(guān)系,從數(shù)學的角度論證了Time-To-Count方法的科學性。詳細說明了基于ARM 7 LPC2132的Time-To-Count輻射測量儀的硬件設(shè)計、軟件編程的過程,通過高速微處理芯片LPC2132的使用,成功完成了對基于MCS-51單片機的Time-To-Count測量儀的改進。改進后的輻射儀器具有量程寬、精度高、易操作、用戶界面友好等特點。本論文根據(jù)實驗結(jié)果總結(jié)出了Time-To-Count技術(shù)中的幾點關(guān)鍵因素,如:處理器的頻率、計數(shù)前時間、雜質(zhì)時間、采樣次數(shù)和測量時間等,重點分析了雜質(zhì)時間的組成以及引入雜質(zhì)時間的主要因素等,對國內(nèi)核輻射測量儀的研究具有一定的指導意義。

    標簽: TimeToCount ARM 輻射測量儀

    上傳時間: 2013-06-24

    上傳用戶:pinksun9

  • 基于ARM的T波交替檢測技術(shù)

    心血管系統(tǒng)疾病是現(xiàn)今世界上發(fā)病率和死亡率最高的疾病之一。T波交替(T-wavealtemans,TWA)作為一種非穩(wěn)態(tài)的心電變異性現(xiàn)象,是指心電T波段振幅、形態(tài)甚至極性逐拍交替變化。大量研究表明,TWA與室性心律失常、心臟性猝死等有直接密切的關(guān)系,已成為一種無創(chuàng)獨立性預(yù)測指標。隨著數(shù)字信號處理技術(shù)和計算機技術(shù)的迅速發(fā)展,微伏級的TWA已經(jīng)可以被檢出,并且精度越來越高。本文以T波交替檢測為中心,基于ARM給出了T波交替檢測技術(shù)原理性樣機的硬件及軟件,實現(xiàn)實時監(jiān)護的目的。 在TWA檢測研究中,需要對心電信號進行預(yù)處理,即信號去噪和特征點檢測。小波分析以其多分辨率的特性和表征時頻兩域信號局部特征的能力成為我們選取的心電信號自動分析手段。文中采用小波變換將原始心電信號分解為不同頻段的細節(jié)信號,根據(jù)三種主要噪聲的不同能量分布,采用自適應(yīng)閾值和軟硬閾值折衷處理策略用閾值濾波方法對原始信號進行去噪處理:同時基于心電信號的特征點R峰對應(yīng)于Mexican-hat小波變換的極值點,因此我們使用Mexican-hat小波檢測R峰,通過附加檢測方案確保了位置的準確性,并根據(jù)需要提出了T波矩陣提取方法。 隨后文章介紹了T波交替的產(chǎn)生機理及研究進展,分別從臨床應(yīng)用和檢測方法上展現(xiàn)了目前TWA的發(fā)展進程,并利用了譜分析法、相關(guān)分析法和移動平均修正算法分別從時域和頻域?qū)σ恍颖緮?shù)據(jù)進行T波交替檢測。在檢測中譜分析法抗噪能力較強,但作為一種頻域檢測方法,無法檢測非穩(wěn)態(tài)TWA信號,而相關(guān)分析法受呼吸、噪聲影響較大,數(shù)據(jù)要求較高,因此可以在譜分析檢測為陽性TWA基礎(chǔ)上,再對信號進行相關(guān)分析,從而克服自身算法缺陷,確定交替幅度和時間段。最后對影響檢測結(jié)果的因素進行討論研究,從而降低檢測誤差。 文章還設(shè)計了T波交替檢測技術(shù)原理性樣機的關(guān)鍵部分電路和軟件框架。硬件部分圍繞ARM核的Samsung S3C44BOX為核心,設(shè)計了該樣機的關(guān)鍵電路,包括采集模塊、數(shù)據(jù)處理模塊(外部存儲電路、通信接口電路等)。其中在采集模塊中針對心電信號是微弱信號并且干擾大的特點,采用了具有高共模抑制比和高輸入阻抗的分級放大電路,有效的提取了信號分量:A/D轉(zhuǎn)換電路保證了信號量化的高精度。利用USB接口芯片和刪內(nèi)部異步串行通訊實現(xiàn)系統(tǒng)與外界聯(lián)系。系統(tǒng)軟件中首先介紹了系統(tǒng)的軟件開發(fā)環(huán)境,然后給出了心電信號分析及處理程序設(shè)計流程圖及實現(xiàn),使它們共同完成系統(tǒng)的軟件監(jiān)護功能。

    標簽: ARM 檢測技術(shù)

    上傳時間: 2013-07-27

    上傳用戶:familiarsmile

  • 空間矢量PWM算法的理解.pdf

    三相spwm信號是由高頻載波和三相調(diào) 制波比較而得的,三相svpwm信號也可理解為由高頻載波和三相調(diào)制波比較而得,區(qū)別是前者的三相調(diào)制波是三相對稱的正弦波,后者的三相調(diào)制波是三相對稱的馬鞍形波,馬鞍形波由正弦波和一定幅值的三次諧波復(fù)合而成。但令人回味的是,svpwm的最初出現(xiàn)和發(fā)展卻和以上思路大相徑庭,其完全從空間矢量的角度出發(fā),后來人們才發(fā)現(xiàn)svpwm和spwm的以上淵源[1]。至今svpwm已在三相或多相逆變器中得以廣泛應(yīng)用,其原因有兩個,一是采用svpwm的逆變器輸出相電壓中的基波含量高于采用spwm的逆變器[2][3],二是dsp的快速運算能力可以實時計算開關(guān)時間。但在實際應(yīng)用svpwm時,往往對以下問題感到疑惑:svpwm算法的推導、開關(guān)向量的選擇、dsp的實現(xiàn)、逆變器輸出相電壓有效值的大小。本文的內(nèi)容將有助這些疑惑的解決,更靈活地應(yīng)用svpwm算法。

    標簽: PWM 空間矢量 算法

    上傳時間: 2013-06-05

    上傳用戶:851197153

  • 三種SPWM波形生成算法的分析與實現(xiàn)

    變頻技術(shù)作為現(xiàn)代電力電子的核心技術(shù),集現(xiàn)代電子、信息和智能技術(shù)于一體。而SPWM(正弦波脈寬調(diào)制)波的產(chǎn)生和控制則是變頻技術(shù)的核心之一。本文對SPWM 波形生成的三種算法--對稱規(guī)則采樣法、不對稱規(guī)則

    標簽: SPWM 波形 生成算法

    上傳時間: 2013-04-24

    上傳用戶:793212294

  • 39839電感量計算小巧實用的綠色軟件,根據(jù)輸入的線圈長度、線圈直徑、導線直徑、線圈匝數(shù)及工作頻率快速計算出電感量、自分布電容、空載Q值、自諧振頻率

    39839電感量計算小巧實用的綠色軟件,根據(jù)輸入的線圈長度、線圈直徑、導線直徑、線圈匝數(shù)及工作頻率快速計算出電感量、自分布電容、空載Q值、自諧振頻率

    標簽: 39839 電感量 計算 線圈

    上傳時間: 2013-06-03

    上傳用戶:夜月十二橋

  • TLP521光耦和三極管2sc2120、IRF9140組成的驅(qū)動電路

    TLP521光耦和2sc2120三極管,IRF9140組成的驅(qū)動電路

    標簽: 2120 9140 TLP 521

    上傳時間: 2013-07-07

    上傳用戶:西伯利亞

  • 三菱plc教材

    小教材三菱plc教材,plc入門技術(shù)簡介。

    標簽: plc 三菱 教材

    上傳時間: 2013-06-17

    上傳用戶:yare

  • DVBT信道編解碼算法研究及FPGA實現(xiàn)

    數(shù)字通信系統(tǒng)中,在實際信道上傳輸數(shù)字信號時,由于信道傳輸特性不理想及噪聲的影響,接收端所收到的數(shù)字信號不可避免地會發(fā)生錯誤。為了減小誤碼率,提高接收質(zhì)量,必須采用差錯控制編碼。對于數(shù)字視頻通信系統(tǒng)這類高碼率,高要求的系統(tǒng),為了提供優(yōu)良的圖象質(zhì)量,采用差錯控制編碼尤為重要。 本文采用的DVB-T系統(tǒng)差錯控制技術(shù)是針對于數(shù)字視頻通信而設(shè)計的,提出了糾錯編碼結(jié)合交織技術(shù)的實現(xiàn)方案,即RS(204,188,8)截短碼、卷積交織、卷積碼三種技術(shù)的級聯(lián)。各技術(shù)中的參數(shù)設(shè)計為輸入的MPEG-2傳輸流(TS流)提供了便利,在編碼后可以保持傳輸流的幀結(jié)構(gòu)和同步字節(jié)不改變,使接收端的同步捕獲和同步跟蹤成為可能。 本文首先簡要介紹了差錯控制技術(shù),DVB-T系統(tǒng),以及硬件實現(xiàn)所用到的FPGA實現(xiàn)方法。然后分別研究RS碼、卷積交織、卷積碼的編解碼原理,并提出了三類技術(shù)的硬件實現(xiàn)方案。其中,重點論述了RS碼解碼的硬件實現(xiàn)。將RS碼解碼分為四個模塊:伴隨式計算,BM迭代,錢搜索和錯誤值計算,分別講述每個模塊的電路設(shè)計方案并給出仿真結(jié)果。最后,將該差錯控制系統(tǒng)應(yīng)用于一個輸出速率恒定的實際數(shù)字視頻通信系統(tǒng)中,按系統(tǒng)需要,加入了接口電路和速率控制的設(shè)計。

    標簽: DVBT FPGA 信道 編解碼

    上傳時間: 2013-04-24

    上傳用戶:gcs333

  • 高精度電網(wǎng)功率因數(shù)測量加權(quán)插值FFT優(yōu)化算法

    高精度電網(wǎng)功率因數(shù)測量加權(quán)插值FFT優(yōu)化算法

    標簽: FFT 高精度 電網(wǎng) 功率因數(shù)

    上傳時間: 2013-05-22

    上傳用戶:88mao

主站蜘蛛池模板: 阿勒泰市| 巴中市| 郑州市| 北川| 沙坪坝区| 镇安县| 苗栗市| 松溪县| 灵武市| 秀山| 高唐县| 紫阳县| 湘潭市| 东山县| 阜康市| 修武县| 台东县| 南宁市| 万荣县| 山东省| 盐亭县| 胶州市| 屯门区| 庆阳市| 韶关市| 苍溪县| 娄底市| 永昌县| 宜兰县| 浏阳市| 定西市| 额济纳旗| 波密县| 湘潭县| 大竹县| 铜鼓县| 黔江区| 突泉县| 丁青县| 团风县| 沙田区|