電流互感器是電力系統(tǒng)中最重要的高壓設(shè)備之一。它被廣泛應(yīng)用于繼電保護(hù)、系統(tǒng)監(jiān)測(cè)、電力系統(tǒng)分析之中,關(guān)系到電力系統(tǒng)的安全性與可靠性。隨著電力系統(tǒng)向高電壓、大容量和數(shù)字化方向的發(fā)展,傳統(tǒng)的電磁式電流互感器很難滿足電力系統(tǒng)發(fā)展的進(jìn)一步要求。因此,研究基于計(jì)算機(jī)技術(shù)、現(xiàn)代通信技術(shù)及數(shù)字處理技術(shù)的以電子式電流互感器(ECT)為代表的、新型的高精度電流互感器成了大勢(shì)所趨。在電子式電流互感器的應(yīng)用研究中,ECT高壓側(cè)的電源問(wèn)題是關(guān)鍵技術(shù)之一。 本文對(duì)國(guó)內(nèi)外電子式電流互感器發(fā)展的現(xiàn)狀進(jìn)行了描述,并對(duì)已有的電子式電流互感器的高壓側(cè)供能方式進(jìn)行了總結(jié)。論文根據(jù)本課題組所研究的電子式電流互感器的特點(diǎn),對(duì)電子式電流互感器的高壓側(cè)供能系統(tǒng)的設(shè)計(jì)進(jìn)行了研究,提出一種將兩種供能方式結(jié)合使用的組合電源,并設(shè)計(jì)了這兩種電源之間的切換方法。 本文首先設(shè)計(jì)了一種應(yīng)用于高壓電子式電流互感器的數(shù)字化激光電源,包括大功率激光器的驅(qū)動(dòng)電路、基于16位低功耗單片機(jī)MSP430的過(guò)流保護(hù)電路和恒溫控制電路、輸入電路、顯示電路、以及高壓側(cè)變換電路。其供能部分由低電位側(cè)的大功率激光光源產(chǎn)生激光輸出,經(jīng)光纖將激光能量傳輸?shù)竭_(dá)高電位側(cè)的光電池,再由光電池進(jìn)行光功率到電功率的光電變換后,形成滿足光電電流互感器傳感頭部分所需的電壓輸出。實(shí)驗(yàn)結(jié)果表明,該電源可以提供穩(wěn)定的6V電壓,其功率不少于300mW。 本文又設(shè)計(jì)了了一種應(yīng)用于高壓側(cè)電子裝置中的CT電源方案:通過(guò)一個(gè)特制的電流互感器(CT),直接從高壓側(cè)一次母線電流獲取電能,憑借在CT和整流橋之間串聯(lián)的一個(gè)電感,大大降低了施加在整流橋上的的感應(yīng)電壓并限制了CT的輸出電流,起到了穩(wěn)定電壓和保護(hù)后續(xù)電路的作用。實(shí)驗(yàn)結(jié)果表明,該電源能輸出穩(wěn)定的5V直流電壓,紋波不超過(guò)25mV。 最后,本文提出了一種將兩種供能方式結(jié)合使用的組合電源,并設(shè)計(jì)了這兩種電源之間的切換方法,解決了取電CT電源的死區(qū)問(wèn)題,延長(zhǎng)了激光器的使用壽命。
上傳時(shí)間: 2013-06-05
上傳用戶:chuandalong
混合動(dòng)力電動(dòng)汽車(HEV)作為降低城市汽車尾氣污染、減少油耗和調(diào)整能源結(jié)構(gòu)的行業(yè)新技術(shù),前景十分廣闊,日益受到人們的關(guān)注,其開發(fā)也成為新的熱點(diǎn)。驅(qū)動(dòng)電機(jī)及其控制系統(tǒng)是HEV的核心部分,其性能的優(yōu)劣很大程度上決定了車輛的動(dòng)態(tài)性能,因此對(duì)其進(jìn)行研究具有重要的理論意義和應(yīng)用價(jià)值。 本文主要研究混合動(dòng)力車用交流驅(qū)動(dòng)電機(jī)控制系統(tǒng),以高性能的數(shù)字信號(hào)處理器(DSP)為核心,采用轉(zhuǎn)子磁鏈定向矢量控制(FOC)算法,設(shè)計(jì)了一種基于DSP的交流驅(qū)動(dòng)電機(jī)控制器。主要研究?jī)?nèi)容如下: 首先,在分析國(guó)內(nèi)外研究狀況和比較幾種常用驅(qū)動(dòng)電機(jī)的基礎(chǔ)上,結(jié)合HEV對(duì)驅(qū)動(dòng)電機(jī)的特性要求,選擇交流異步電機(jī)作為HEV的驅(qū)動(dòng)電機(jī)和基于轉(zhuǎn)子磁鏈定向的矢量控制技術(shù)作為系統(tǒng)開發(fā)方案。 其次,以交流異步電機(jī)的動(dòng)態(tài)數(shù)學(xué)模型為基礎(chǔ)建立了轉(zhuǎn)子磁鏈位置的電流計(jì)算模型,實(shí)現(xiàn)交流電機(jī)轉(zhuǎn)矩和勵(lì)磁電流分量的有效解耦。結(jié)合矢量控制理論及電壓空間矢量脈寬調(diào)制(SVPWM)技術(shù)給出了混合動(dòng)力車用驅(qū)動(dòng)電機(jī)矢量控制系統(tǒng)結(jié)構(gòu)框圖。 最后,以一臺(tái)5kw異步電機(jī)作為控制對(duì)象,搭建了系統(tǒng)主電路。系統(tǒng)控制電路以TMS32OLF2407A DSP為核心,由電流、電壓及速度等檢測(cè)模塊和CAN總線通信模塊組成。系統(tǒng)以CCS2集成開發(fā)環(huán)境為平臺(tái),采用匯編語(yǔ)言編程,設(shè)計(jì)了基于DSP的矢量控制具體的軟件實(shí)現(xiàn)方法,實(shí)現(xiàn)了全數(shù)字化的HEV驅(qū)動(dòng)電機(jī)矢量控制系統(tǒng)。論文給出了驅(qū)動(dòng)電機(jī)運(yùn)行的調(diào)試結(jié)果并進(jìn)行了分析。 實(shí)驗(yàn)表明該控制系統(tǒng)響應(yīng)速度快,電壓利用率高,動(dòng)態(tài)性能好,能夠滿足HEV對(duì)驅(qū)動(dòng)電機(jī)動(dòng)態(tài)和靜態(tài)性能的要求,對(duì)開發(fā)出低成本、高性能的電機(jī)驅(qū)動(dòng)控制系統(tǒng)具有實(shí)用價(jià)值。
標(biāo)簽: 混合動(dòng)力 車用 矢量控制
上傳時(shí)間: 2013-07-06
上傳用戶:banyou
隨著微電子和計(jì)算機(jī)技術(shù)的迅速發(fā)展,傳統(tǒng)的金屬探測(cè)系統(tǒng)也正向著新的方向進(jìn)行快速更新和發(fā)展。金屬探測(cè)器最初主要應(yīng)用于工礦探測(cè)和軍用探雷,現(xiàn)在已經(jīng)廣泛應(yīng)用于旅行安檢以及食品、紡織、木材、玩具、藥品等生產(chǎn)加工行業(yè)的質(zhì)量安全檢測(cè)。在科學(xué)技術(shù)不斷進(jìn)步及金屬探測(cè)器在社會(huì)生活中的作用不斷凸現(xiàn)的時(shí)代背景下,怎樣提升和完善金屬探測(cè)儀器的性能,已經(jīng)成為本領(lǐng)域一個(gè)亟待解決的課題。 本課題的目的是設(shè)計(jì)一種雙頻率工作的數(shù)字式金屬探測(cè)系統(tǒng),可以同時(shí)以較高的精度檢測(cè)到鐵磁性和非鐵磁性金屬,從工作模式上徹底改變普通金屬探測(cè)器檢測(cè)種類單一和精度不高的現(xiàn)狀。該檢測(cè)系統(tǒng)采用多通道同步數(shù)字頻率合成(DDS)技術(shù)產(chǎn)生正弦信號(hào)源,通過(guò)電渦流傳感器檢測(cè)金屬異物。系統(tǒng)以TMS320LF2407為數(shù)據(jù)處理中心,利用自學(xué)習(xí)算法來(lái)實(shí)現(xiàn)系統(tǒng)參數(shù)的自動(dòng)調(diào)整,并設(shè)計(jì)了良好的人機(jī)對(duì)話界面,提高金屬探測(cè)器的可讀性和可操作性。 本文從金屬檢測(cè)的理論分析和雙頻金屬探測(cè)器的設(shè)計(jì)兩個(gè)方面做了具體闡述。理論分析部分從電磁場(chǎng)的角度論述了金屬物質(zhì)的幅度和相位特性,并得出了檢測(cè)頻率與不同金屬的檢測(cè)靈敏度存在相關(guān)性的結(jié)論。文中把系統(tǒng)設(shè)計(jì)分為三大部分:檢測(cè)系統(tǒng)的工作原理和總體構(gòu)造、系統(tǒng)硬件設(shè)計(jì)、系統(tǒng)軟件設(shè)計(jì)。第一部分主要闡述了整個(gè)系統(tǒng)的工作原理以及實(shí)現(xiàn)方案;硬件設(shè)計(jì)部分從檢測(cè)電路和控制電路兩個(gè)方面入手,詳細(xì)敘述了發(fā)射、接收、解調(diào)電路以及電渦流傳感器的設(shè)計(jì)過(guò)程,并著重介紹了DSP、單片機(jī)等主要芯片的接口電路設(shè)計(jì),包括基于RS-485的SCI串口通信的硬件電路設(shè)計(jì);軟件設(shè)計(jì)部分主要闡述了在CCS、u-Visin集成環(huán)境下DSP系統(tǒng)和人機(jī)對(duì)話系統(tǒng)的程序流程,并敘述了系統(tǒng)自學(xué)習(xí)方法的實(shí)現(xiàn)過(guò)程,最后著重分析了SCI串口通信的軟件實(shí)現(xiàn)方法。 文中最后整理了系統(tǒng)測(cè)試的實(shí)驗(yàn)結(jié)果。通過(guò)實(shí)驗(yàn)分析可知,采用雙頻工作的金屬探測(cè)器對(duì)鐵磁性和非鐵磁性金屬都有較高的檢測(cè)精度。整個(gè)系統(tǒng)的可讀性與可操作性較好,易于擴(kuò)展升級(jí)、性價(jià)比高,具有良好的應(yīng)用前景。
上傳時(shí)間: 2013-04-24
上傳用戶:bruce
近年來(lái),光伏發(fā)電技術(shù)取得了長(zhǎng)足的進(jìn)步,太陽(yáng)能已經(jīng)成為當(dāng)今能源的一個(gè)重要補(bǔ)充。光伏并網(wǎng)發(fā)電是太陽(yáng)能大規(guī)模利用的必然趨勢(shì)。本文以光伏并網(wǎng)發(fā)電系統(tǒng)的核心設(shè)備并網(wǎng)逆變器為研究對(duì)象,首先給出了單相光伏并網(wǎng)逆變器的詳細(xì)的硬件設(shè)計(jì)過(guò)程,然后對(duì)光伏陣列的最大功能點(diǎn)跟蹤、逆變器的特性及控制方法、并網(wǎng)系統(tǒng)的人機(jī)交互子系統(tǒng)等進(jìn)行了深入的研究。 并網(wǎng)逆變器的硬件設(shè)計(jì)是整個(gè)系統(tǒng)的基礎(chǔ)和難點(diǎn)之一。本文設(shè)計(jì)了1套額定功率為3KW的兩級(jí)式光伏并網(wǎng)逆變器,采用F2812DSP作為系統(tǒng)的控制核心。文章對(duì)整個(gè)硬件的設(shè)計(jì)過(guò)程和電路原理進(jìn)行了詳細(xì)分析。 為提高系統(tǒng)效率,光伏陣列都要求工作在最大功率點(diǎn)處。本文在分析了各種MPPT方法的優(yōu)缺點(diǎn)的基礎(chǔ)上,提出了基于移相全橋電路的電導(dǎo)增量法,給出了整個(gè)算法在DSP中的實(shí)現(xiàn)過(guò)程。 并網(wǎng)逆變器輸出級(jí)的跟蹤控制技術(shù)是系統(tǒng)設(shè)計(jì)的關(guān)鍵點(diǎn)之一。本文詳細(xì)分析了逆變器輸出級(jí)的電路工作模式和數(shù)學(xué)模型,深入分析了T型輸出濾波器的原理及電網(wǎng)電壓對(duì)輸出電流的影響,提出了基于前饋補(bǔ)償?shù)臄?shù)字PI控制,并給出了其在DSP中的實(shí)現(xiàn)過(guò)程。 為完成對(duì)并網(wǎng)系統(tǒng)的監(jiān)控和設(shè)置,設(shè)計(jì)了人機(jī)交互子系統(tǒng),該系統(tǒng)是一個(gè)小型嵌入式系統(tǒng),用MODBUS協(xié)議實(shí)現(xiàn)了子系統(tǒng)和控制系統(tǒng)的通信。本文詳細(xì)分析了整個(gè)子系統(tǒng)的軟硬件設(shè)計(jì)過(guò)程。 最后,對(duì)整個(gè)系統(tǒng)進(jìn)行了實(shí)驗(yàn)驗(yàn)證,結(jié)果表明了系統(tǒng)方案的可行性,系統(tǒng)實(shí)現(xiàn)了穩(wěn)定可靠運(yùn)行。
標(biāo)簽: 單相 光伏并網(wǎng) 數(shù)字式
上傳時(shí)間: 2013-05-26
上傳用戶:88mao
地鐵列車牽引轉(zhuǎn)矩控制是影響列車安全可靠運(yùn)行的重要因素,牽引變流模塊是整個(gè)列車交流傳動(dòng)系統(tǒng)的核心設(shè)備,而牽引轉(zhuǎn)矩控制又是最關(guān)鍵的部分。本文以某城市國(guó)產(chǎn)化地鐵列車為研究對(duì)象,主要針對(duì)牽引轉(zhuǎn)矩控制方案進(jìn)行研究并通過(guò)設(shè)計(jì)列車通信網(wǎng)絡(luò)對(duì)牽引轉(zhuǎn)矩實(shí)施監(jiān)測(cè)。 論文首先介紹地鐵列車牽引轉(zhuǎn)矩控制的研究現(xiàn)狀,分析目前高性能交流調(diào)速方法在地鐵列車牽引轉(zhuǎn)矩控制中的應(yīng)用現(xiàn)狀。并簡(jiǎn)要介紹了網(wǎng)絡(luò)監(jiān)測(cè)技術(shù)的研究現(xiàn)狀和CANopen總線協(xié)議在軌道交通車輛中的國(guó)內(nèi)外應(yīng)用現(xiàn)狀。 采用可編程邏輯控制器PLC及其子模塊構(gòu)建了通信網(wǎng)絡(luò)的硬件結(jié)構(gòu),并設(shè)計(jì)了通信網(wǎng)絡(luò)軟件。對(duì)CANopen的通信報(bào)文進(jìn)行了具體設(shè)計(jì),實(shí)現(xiàn)了應(yīng)用層協(xié)議CANopen的功能。 根據(jù)實(shí)際運(yùn)行的需求,對(duì)牽引電機(jī)轉(zhuǎn)矩控制、牽引逆變器的PWM控制方式進(jìn)行了研究。采用帶轉(zhuǎn)矩內(nèi)環(huán)的轉(zhuǎn)速、磁鏈閉環(huán)矢量控制方法,應(yīng)用帶定時(shí)調(diào)制環(huán)節(jié)的滯環(huán)電流比較PWM和優(yōu)化脈沖控制方案分段對(duì)逆變器進(jìn)行PWM控制。通過(guò)設(shè)計(jì)牽引系統(tǒng)與CANopen網(wǎng)絡(luò)的數(shù)據(jù)接口,實(shí)現(xiàn)了通信網(wǎng)絡(luò)對(duì)牽引控制效果的監(jiān)測(cè),并對(duì)牽引特性曲線進(jìn)行分析;選取特性曲線上的特定工作點(diǎn),對(duì)牽引控制效果進(jìn)行了分析說(shuō)明。測(cè)試結(jié)果表明本文討論的牽引矢量控制和PWM控制方案能夠很好地滿足列車運(yùn)營(yíng)對(duì)牽引轉(zhuǎn)矩的要求。 目前,該系統(tǒng)正在進(jìn)行線路運(yùn)行調(diào)試和性能改進(jìn),準(zhǔn)備交付用戶進(jìn)行商業(yè)線路運(yùn)營(yíng),具有很好的工程應(yīng)用價(jià)值。
標(biāo)簽: CANopen 地鐵列車 轉(zhuǎn)矩
上傳時(shí)間: 2013-08-02
上傳用戶:LYNX
隨著信息技術(shù)的飛速發(fā)展,數(shù)據(jù)吞吐量急劇增長(zhǎng),要求有更高的傳輸速度,來(lái)滿足大量數(shù)據(jù)的傳輸,而原有的并行數(shù)據(jù)傳輸總線結(jié)構(gòu)上存在自身無(wú)法克服的缺陷,在高頻環(huán)境下容易串?dāng)_,而增大誤碼率。SATA串行總線技術(shù)應(yīng)運(yùn)而生。作為一種新型的總線接口,它提供了高達(dá)3.0Gbps的數(shù)據(jù)傳輸速率,使用8B/10B編碼格式,采用LVDS NRZ串行數(shù)據(jù)傳輸方式,有良好的抗干擾性能,有更強(qiáng)的達(dá)到32位的循環(huán)冗余校驗(yàn),并且提供了良好的物理接口特性,支持熱拔插,代表著計(jì)算機(jī)總線接口技術(shù)的發(fā)展方向。FPGA作為一種低功耗的半導(dǎo)體器件,在高頻工作環(huán)境中有優(yōu)良的性能,將處理器與低功耗FPGA結(jié)合起來(lái)使用是數(shù)據(jù)存儲(chǔ)應(yīng)用的趨勢(shì),這樣能夠使得接口方案更加靈活。而在眾多FPGA器件中,Xilinx公司的Virtex-4平臺(tái)內(nèi)部集成了PowerPC高性能處理器,并且其中提供了Rocket IO MGT這種嵌入式的多速率串行收發(fā)器,能夠以6.25-622Mb/s的速度傳送數(shù)據(jù),并且支持包括SATA協(xié)議在內(nèi)的多種串行通信協(xié)議。 本文從物理層、鏈路層、傳輸層分析了SATA1.0技術(shù)的接口協(xié)議,在此基礎(chǔ)提出滿足協(xié)議需求和適合FPGA設(shè)計(jì)的設(shè)計(jì)方案,并給出總體設(shè)計(jì)框圖,依照FPGA的設(shè)計(jì)方法,采用Xilinx公司的Virtex-4設(shè)計(jì)了一個(gè)符合SATA1.0接口協(xié)議的嵌入式存儲(chǔ)裝置,實(shí)現(xiàn)數(shù)據(jù)的存儲(chǔ),仿真運(yùn)行結(jié)果正常。
標(biāo)簽: SerialATA FPGA 嵌入式系統(tǒng)
上傳時(shí)間: 2013-04-24
上傳用戶:sz_hjbf
近年來(lái),隨著計(jì)算機(jī)技術(shù)、網(wǎng)絡(luò)技術(shù)與無(wú)線通信技術(shù)的高速發(fā)展和廣泛應(yīng)用,無(wú)線傳感器網(wǎng)絡(luò)已成為國(guó)際上備受關(guān)注的前沿?zé)狳c(diǎn)之一。無(wú)線傳感器網(wǎng)絡(luò)在軍事應(yīng)用、環(huán)境監(jiān)測(cè)、醫(yī)療護(hù)理、空間探索等方面都顯示了廣闊的應(yīng)用前景,被認(rèn)為是21世紀(jì)最有發(fā)展前景的技術(shù)之一。 本文通過(guò)對(duì)無(wú)線傳感器網(wǎng)絡(luò)的發(fā)展現(xiàn)狀、發(fā)展趨勢(shì)以及水環(huán)境多參數(shù)監(jiān)測(cè)特點(diǎn)的研究,提出了面向水環(huán)境多參數(shù)監(jiān)測(cè)應(yīng)用的無(wú)線傳感器網(wǎng)絡(luò)系統(tǒng)的解決方案,分析了系統(tǒng)設(shè)計(jì)的目標(biāo)和功能,并指出了系統(tǒng)軟硬件平臺(tái)的設(shè)計(jì)要求與設(shè)計(jì)原則。依托2006年江蘇省科技攻關(guān)項(xiàng)目“總線化智能多參數(shù)高精度檢測(cè)與控制儀表”,設(shè)計(jì)了基于Silicon Laboratories的C8051F310處理器和CC2420射頻芯片的硬件開發(fā)平臺(tái),詳細(xì)地描述了硬件平臺(tái)中各個(gè)功能模塊的細(xì)節(jié),并在此平臺(tái)上實(shí)現(xiàn)和改進(jìn)了SimpliciTI協(xié)議和IEEE802.15.4/Zigbee協(xié)議,最后對(duì)系統(tǒng)進(jìn)行了測(cè)試。整個(gè)系統(tǒng)以無(wú)線傳感器網(wǎng)絡(luò)技術(shù)為核心,增強(qiáng)了系統(tǒng)的靈活性、可維護(hù)性和可擴(kuò)展性,同時(shí)系統(tǒng)模塊化、開放式的結(jié)構(gòu)使系統(tǒng)具有良好的可移植性。 將無(wú)線傳感器網(wǎng)絡(luò)技術(shù)應(yīng)用于水環(huán)境多參數(shù)監(jiān)測(cè),涉及到傳感器技術(shù)、無(wú)線通信技術(shù)、計(jì)算機(jī)應(yīng)用技術(shù)等多種技術(shù)。到目前為止,隨著科學(xué)技術(shù)的不斷進(jìn)步,它還在不斷地完善,前景尤為廣闊。
標(biāo)簽: 無(wú)線傳感器網(wǎng)絡(luò) 多參數(shù) 水環(huán)境
上傳時(shí)間: 2013-06-01
上傳用戶:無(wú)聊來(lái)刷下
近年來(lái),近距離無(wú)線傳輸技術(shù)是發(fā)展最快、最引入注目的技術(shù),而ZigBee恰恰是填補(bǔ)了低速率無(wú)線通信技術(shù)的空缺,與其他標(biāo)準(zhǔn)在應(yīng)用上相得益彰。它專注于近距離傳輸,成本低、同時(shí)入門檻也低,雖然其出現(xiàn)較晚,但目前已經(jīng)得到人們?cè)絹?lái)越多的關(guān)注,成為無(wú)線技術(shù)研究的一個(gè)新熱點(diǎn)。 本文在詳細(xì)分析了傳統(tǒng)的抄表方式和無(wú)線抄表系統(tǒng)的發(fā)展?fàn)顩r以及相關(guān)的無(wú)線數(shù)據(jù)傳輸技術(shù)的基礎(chǔ)上,提出了基于ZigBee技術(shù)的無(wú)線抄表系統(tǒng)的方案。論文在研究ZigBee組網(wǎng)技術(shù)的基礎(chǔ)上,設(shè)計(jì)了基于ZigBee開發(fā)平臺(tái)的無(wú)線嵌入式抄表系統(tǒng),編寫了相應(yīng)的軟件,完成了相應(yīng)的調(diào)試和分析,并進(jìn)行了系統(tǒng)的可靠性、實(shí)時(shí)性和安全性等問(wèn)題分析。為了減少系統(tǒng)由于節(jié)點(diǎn)路由而造成的功耗損耗過(guò)大的問(wèn)題,本文在組網(wǎng)應(yīng)用過(guò)程中采用Tree+AODVjr的路由算法,從而保持系統(tǒng)能夠保持較小功耗的情況下進(jìn)行數(shù)據(jù)的多跳路由,同時(shí)以ARM S3C2410為核心實(shí)現(xiàn)了基站設(shè)計(jì),實(shí)現(xiàn)小區(qū)電表數(shù)據(jù)的集中采集,并通過(guò)GPRS/GSM模塊實(shí)現(xiàn)基站和抄表中心的數(shù)據(jù)傳輸和實(shí)時(shí)控制,在此基礎(chǔ)上,對(duì)抄表系統(tǒng)軟件也進(jìn)行了相應(yīng)的設(shè)計(jì)。 通過(guò)單點(diǎn)對(duì)單點(diǎn)、星形網(wǎng)絡(luò)數(shù)據(jù)傳輸實(shí)驗(yàn),取得了相應(yīng)的實(shí)驗(yàn)數(shù)據(jù),對(duì)于協(xié)議的特點(diǎn)、系統(tǒng)可靠性和功耗情況有了整體把握,為今后ZigBee技術(shù)的進(jìn)一步研究和應(yīng)用打下了堅(jiān)實(shí)基礎(chǔ)。 實(shí)驗(yàn)結(jié)果顯示,本文提出的方案切實(shí)可行,并且采用ZigBee技術(shù)具有節(jié)約資源、操作方便、可靠性高而且易于管理等特點(diǎn),基站和系統(tǒng)利用較為成熟的GPRS/GSM網(wǎng)絡(luò)技術(shù)進(jìn)行通訊,既滿足了實(shí)時(shí)性要求,又降低了成本。
標(biāo)簽: ZIGBEE 嵌入式 自動(dòng)抄表系統(tǒng)
上傳時(shí)間: 2013-06-27
上傳用戶:kjgkadjg
本文介紹了埋弧焊的特點(diǎn)、發(fā)展過(guò)程、國(guó)內(nèi)外的研究現(xiàn)狀;分析了軟開關(guān)逆變式主回路的優(yōu)點(diǎn)、模擬電路控制系統(tǒng)和數(shù)字化控制系統(tǒng)的優(yōu)缺點(diǎn),指出數(shù)字化控制是逆變埋弧焊機(jī)控制的發(fā)展方向;對(duì)埋弧焊接工作原理和埋弧焊機(jī)控制系統(tǒng)進(jìn)行分析,介紹了交流方波埋弧焊的優(yōu)點(diǎn);論述了變動(dòng)送絲電弧控制系統(tǒng)的原理及影響因素,并且分析了變動(dòng)送絲情況下焊接電弧的穩(wěn)定性,為逆變式交流方波埋弧焊系統(tǒng)的設(shè)計(jì)提供了理論依據(jù)。 在分析傳統(tǒng)交流方波埋弧焊主回路的基礎(chǔ)上設(shè)計(jì)了主回路結(jié)構(gòu),對(duì)主回路中一次、二次逆變回路的軟開關(guān)工作方式進(jìn)行分析并做了簡(jiǎn)單仿真。IGBT是逆變電源的核心部件,文中論述了IGBT功率器件的選型和各種保護(hù)措施以保證系統(tǒng)的可靠工作。焊機(jī)工作發(fā)熱量很大,本文介紹了整機(jī)和關(guān)鍵器件的熱設(shè)計(jì)。 數(shù)字化控制方式是逆變埋弧焊機(jī)控制的發(fā)展方向,本文采用“MCU+DSP”的控制結(jié)構(gòu),對(duì)埋弧焊的整個(gè)焊接過(guò)程進(jìn)行精確控制。文中詳細(xì)介紹了主控制板的設(shè)計(jì)思路和電源、電流與電壓反饋、控制芯片最小系統(tǒng)、通信與保護(hù)工作電路。焊機(jī)的工作中,各種干擾不可避免,對(duì)各種可能干擾分析的基礎(chǔ)上在硬件電路設(shè)計(jì)和PCB板的制作中采取了相應(yīng)的抗干擾措施。軟件設(shè)計(jì)是焊接穩(wěn)定進(jìn)行的關(guān)鍵因素,文中介紹了控制系統(tǒng)中關(guān)鍵步驟的軟件設(shè)計(jì)思路和流程并在軟件的實(shí)現(xiàn)中采用抗干擾措施。 最后,對(duì)采用本控制系統(tǒng)的埋弧焊機(jī)進(jìn)行初步實(shí)驗(yàn),結(jié)果表明本文所設(shè)計(jì)的埋弧焊機(jī)控制系統(tǒng)能夠滿足逆變埋弧自動(dòng)焊的要求,具有電路簡(jiǎn)單,控制精度高,抗干擾能力強(qiáng)、操作方便、工作穩(wěn)定可靠等優(yōu)點(diǎn),提高了焊機(jī)的綜合性能及自動(dòng)化程度。 本課題所設(shè)計(jì)的逆變式交流方波埋弧焊電源具有良好的輸出特性和控制性能,可滿足埋弧自動(dòng)焊和手工焊的要求。采用交流方波的焊接波形、對(duì)焊接整個(gè)過(guò)程進(jìn)行實(shí)時(shí)軟件控制,電弧穩(wěn)定,焊接效果好。 關(guān)鍵詞:埋弧焊;交流方波;逆變;軟開關(guān)
上傳時(shí)間: 2013-06-08
上傳用戶:mingaili888
集成了傳感器、嵌入式計(jì)算、網(wǎng)絡(luò)和無(wú)線通信四大技術(shù)而形成的ZigBee技術(shù)是一種全新的信息獲取和處理技術(shù),能夠協(xié)作實(shí)時(shí)監(jiān)測(cè)、感知和采集各種環(huán)境或監(jiān)測(cè)對(duì)象的信息,并對(duì)信息進(jìn)行處理,傳送到需要的用戶。ZigBee技術(shù)作為一個(gè)全新的領(lǐng)域,對(duì)國(guó)內(nèi)外的研究者提出了大量的挑戰(zhàn)性課題。時(shí)鐘同步是所有分布式系統(tǒng)的重要組成部分,也是ZigBee技術(shù)的一項(xiàng)重要支撐技術(shù),大多數(shù)ZigBee技術(shù)應(yīng)用比如環(huán)境監(jiān)測(cè)系統(tǒng),導(dǎo)航系統(tǒng)等都需要所搜集的傳感數(shù)據(jù)具有準(zhǔn)確時(shí)間信息,否則采集的信息就是不完整的。 本論文介紹了國(guó)內(nèi)外在ZigBee技術(shù)的發(fā)展與現(xiàn)狀,對(duì)IEEE802.15.4/ZigBee的協(xié)議棧做了分析,對(duì)現(xiàn)存的幾種主要的時(shí)鐘同步算法做了研究。本太陽(yáng)能航標(biāo)燈同步閃課題中,為了便于太陽(yáng)能給航標(biāo)燈供電,需要通過(guò)休眠機(jī)制來(lái)降低功耗;為了保證ZigBee網(wǎng)絡(luò)中各設(shè)備協(xié)同工作,時(shí)鐘同步顯得更為重要,它為本系統(tǒng)中的每個(gè)航標(biāo)燈提供正確的時(shí)鐘信息,不但提高系統(tǒng)的傳輸質(zhì)量和效率,而且讓航標(biāo)燈的同步閃光,在航道中起到很好的助航作用。接著,給出了系統(tǒng)的具體實(shí)現(xiàn)過(guò)程,包括各硬件模塊的設(shè)計(jì)原理、電路原理圖及主要模塊的詳細(xì)實(shí)現(xiàn)過(guò)程。最后,指出本文的不足及需要改進(jìn)的地方。其中本文重點(diǎn)包括以下三個(gè)方面: 1.針對(duì)網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)、協(xié)議體系結(jié)構(gòu)以及干擾抑制技術(shù)進(jìn)行深入分析,并與其它無(wú)線通信技術(shù)進(jìn)行比較及對(duì)其相互干擾進(jìn)行研究。 2.對(duì)ZigBee節(jié)點(diǎn)時(shí)鐘同步算法工作原理做了詳細(xì)的研究,總結(jié)了這些算法的優(yōu)缺點(diǎn),并在對(duì)比現(xiàn)有的幾種時(shí)鐘同步算法的基礎(chǔ)上對(duì)泛洪時(shí)間同步協(xié)議多跳時(shí)鐘同步算法的改進(jìn)。 3.設(shè)計(jì)了太陽(yáng)能航標(biāo)燈同步閃光系統(tǒng),給出了硬件原理圖及軟件流程,并且在制PCB板中電磁兼容問(wèn)題的解決進(jìn)行了詳細(xì)描述。 結(jié)果表明,該系統(tǒng)穩(wěn)定、可靠、高效,具有很高的實(shí)用價(jià)值。
標(biāo)簽: ZigBee 短距離 技術(shù)研究
上傳時(shí)間: 2013-04-24
上傳用戶:海陸空653
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1