Keil 軟件實例教程 2 單片機開發中除必要的硬件外,同樣離不開軟件,我們寫的匯編語言源程序要變為CPU可以執行的機器碼有兩種方法,一種是手工匯編,另一種是機器匯編,目前已極少使用手工匯編的方法了。機器匯編是通過匯編軟件將源程序變為機器碼,用于MCS-51 單片機的匯編軟件有早期的A51,隨著單片機開發技術的不斷發展,從普遍使用匯編語言到逐漸使用高級語言開發,單片機的開發軟件也在不斷發展,Keil 軟件是目前最流行開發MCS-51 系列單片機的軟件,這從近年來各仿真機廠商紛紛宣布全面支持Keil 即可看出。Keil 提供了包括C編譯器、宏匯編、連接器、庫管理和一個功能強大的仿真調試器等在內的完整開發方案,通過一個集成開發環境(uVision)將這些部份組合在一起。運行Keil 軟件需要Pentium 或以上的CPU,16MB或更多RAM、20M 以上空閑的硬盤空間、WIN98、NT、WIN2000、WINXP等操作系統。掌握這一軟件的使用對于使用51 系列單片機的愛好者來說是十分必要的,如果你使用C 語言編程,那么Keil 幾乎就是你的不二之選(目前在國內你只能買到該軟件、而你買的仿真機也很可能只支持該軟件),即使不使用C 語言而僅用匯編語言編程,其方便易用的集成環境、強大的軟件仿真調試工具也會令你事半功倍。我們將通過一些實例來學習Keil 軟件的使用,在這一部份我們將學習如何輸入源程序,建立工程、對工程進行詳細的設置,以及如何將源程序變為目標代碼。圖1 所示電路圖使用89C51 單片機作為主芯片,這種單片機性屬于MCS-51 系列,其內部有4K 的FLASH ROM,可以反復擦寫,非常適于做實驗。89C51 的P1 引腳上接8 個發光二極管,P3.2~P3.4 引腳上接4 個按鈕開關,我們的第一個任務是讓接在P1 引腳上的發光二極管依次循環點亮。 一、Keil 工程的建立首先啟動Keil 軟件的集成開發環境,這里假設讀者已正確安裝了該軟件,可以從桌面上直接雙擊uVision 的圖標以啟動該軟件。UVison啟動后,程序窗口的左邊有一個工程管理窗口,該窗口有3 個標簽,分別是Files、Regs、和Books,這三個標簽頁分別顯示當前項目的文件結構、CPU 的寄存器及部份特殊功能寄存器的值(調試時才出現)和所選CPU 的附加說明文件,如果是第一次啟動Keil,那么這三個標簽頁全是空的。
上傳時間: 2013-10-26
上傳用戶:ruan2570406
Keil 軟件實例教程 1. 單片機開發中除必要的硬件外,同樣離不開軟件,我們寫的匯編語言源程序要變為CPU可以執行的機器碼有兩種方法,一種是手工匯編,另一種是機器匯編,目前已極少使用手工匯編的方法了。機器匯編是通過匯編軟件將源程序變為機器碼,用于MCS-51 單片機的匯編軟件有早期的A51,隨著單片機開發技術的不斷發展,從普遍使用匯編語言到逐漸使用高級語言開發,單片機的開發軟件也在不斷發展,Keil 軟件是目前最流行開發MCS-51 系列單片機的軟件,這從近年來各仿真機廠商紛紛宣布全面支持Keil 即可看出。Keil 提供了包括C編譯器、宏匯編、連接器、庫管理和一個功能強大的仿真調試器等在內的完整開發方案,通過一個集成開發環境(uVision)將這些部份組合在一起。運行Keil 軟件需要Pentium 或以上的CPU,16MB或更多RAM、20M 以上空閑的硬盤空間、WIN98、NT、WIN2000、WINXP等操作系統。掌握這一軟件的使用對于使用51 系列單片機的愛好者來說是十分必要的,如果你使用C 語言編程,那么Keil 幾乎就是你的不二之選(目前在國內你只能買到該軟件、而你買的仿真機也很可能只支持該軟件),即使不使用C 語言而僅用匯編語言編程,其方便易用的集成環境、強大的軟件仿真調試工具也會令你事半功倍。我們將通過一些實例來學習Keil 軟件的使用,在這一部份我們將學習如何輸入源程序,建立工程、對工程進行詳細的設置,以及如何將源程序變為目標代碼。圖1 所示電路圖使用89C51 單片機作為主芯片,這種單片機性屬于MCS-51 系列,其內部有4K 的FLASH ROM,可以反復擦寫,非常適于做實驗。89C51 的P1 引腳上接8 個發光二極管,P3.2~P3.4 引腳上接4 個按鈕開關,我們的第一個任務是讓接在P1 引腳上的發光二極管依次循環點亮。 一、Keil 工程的建立首先啟動Keil 軟件的集成開發環境,這里假設讀者已正確安裝了該軟件,可以從桌面上直接雙擊uVision 的圖標以啟動該軟件。UVison啟動后,程序窗口的左邊有一個工程管理窗口,該窗口有3 個標簽,分別是Files、Regs、和Books,這三個標簽頁分別顯示當前項目的文件結構、CPU 的寄存器及部份特殊功能寄存器的值(調試時才出現)和所選CPU 的附加說明文件,如果是第一次啟動Keil,那么這三個標簽頁全是空的。
上傳時間: 2013-11-25
上傳用戶:hanbeidang
單片機入門基礎知識大全免費下載 單片機第八課(尋址方式與指令系統) 通過前面的學習,我們已經了解了單片機內部的結構,并且也已經知道,要控制單片機,讓它為我們干學,要用指令,我們已學了幾條指令,但很零散,從現在開始,我們將要系統地學習8051的指令部份。 一、概述 1、指令的格式 我們已知,要讓計算機做事,就得給計算機以指令,并且我們已知,計算機很“笨”,只能懂得數字,如前面我們寫進機器的75H,90H,00H等等,所以指令的第一種格式就是機器碼格式,也說是數字的形式。但這種形式實在是為難我們人了,太難記了,于是有另一種格式,助記符格式,如MOV P1,#0FFH,這樣就好記了。 這兩種格式之間的關系呢,我們不難理解,本質上它們完全等價,只是形式不一樣而已。 2、匯編 我們寫指令使用匯編格式,而計算機只懂機器碼格式,所以要將我們寫的匯編格式的指令轉換為機器碼格式,這種轉換有兩種方法:手工匯編和機器匯編。手工匯編實際上就是查表,因為這兩種格式純粹是格式不同,所以是一一對應的,查一張表格就行了。不過手工查表總是嫌麻煩,所以就有了計算機軟件,用計算機軟件來替代手工查表,這就是機器匯編。 二、尋址 讓我們先來復習一下我們學過的一些指令:MOV P1,#0FFH,MOV R7,#0FFH這些指令都是將一些數據送到相應的位置中去,為什么要送數據呢?第一個因為送入的數可以讓燈全滅掉,第二個是為了要實現延時,從這里我們可以看出來,在用單片機的編程語言編程時,經常要用到數據的傳遞,事實上數據傳遞是單片機編程時的一項重要工作,一共有28條指令(單片機共111條指令)。下面我們就從數據傳遞類指令開始吧。 分析一下MOV P1,#0FFH這條指令,我們不難得出結論,第一個詞MOV是命令動詞,也就是決定做什么事情的,MOV是MOVE少寫了一個E,所以就是“傳遞”,這就是指令,規定做什么事情,后面還有一些參數,分析一下,數據傳遞必須要有一個“源”也就是你要送什么數,必須要有一個“目的”,也就是你這個數要送到什么地方去,顯然在上面那條指令中,要送的數(源)就是0FFH,而要送達的地方(目的地)就是P1這個寄存器。在數據傳遞類指令中,均將目的地寫在指令的后面,而將源寫在最后。 這條指令中,送給P1是這個數本身,換言之,做完這條指令后,我們可以明確地知道,P1中的值是0FFH,但是并不是任何時候都可以直接給出數本身的。例如,在我們前面給出的延時程序例是這樣寫的: MAIN: SETB P1.0 ;(1) LCALL DELAY ;(2) CLR P1.0 ;(3) LCALL DELAY ;(4) AJMP MAIN ;(5) ;以下子程序 DELAY: MOV R7,#250 ;(6) D1: MOV R6,#250 ;(7) D2: DJNZ R6,D2 ;(8) DJNZ R7,D1 ;(9) RET ;(10) END ;(11) 表1 MAIN: SETB P1.0 ;(1) MOV 30H,#255 LCALL DELAY ; CLR P1.0 ;(3) MOV 30H,#200 LCALL DELAY ;(4) AJMP MAIN ;(5) ;以下子程序 DELAY: MOV R7,30H ;(6) D1: MOV R6,#250 ;(7) D2: DJNZ R6,D2 ;(8) DJNZ R7,D1 ;(9) RET ;(10) END ;(11) 表2 這樣一來,我每次調用延時程序延時的時間都是相同的(大致都是0.13S),如果我提出這樣的要求:燈亮后延時時間為0.13S燈滅,燈滅后延時0.1秒燈亮,如此循環,這樣的程序還能滿足要求嗎?不能,怎么辦?我們可以把延時程序改成這樣(見表2):調用則見表2中的主程,也就是先把一個數送入30H,在子程序中R7中的值并不固定,而是根據30H單元中傳過來的數確定。這樣就可以滿足要求。 從這里我們可以得出結論,在數據傳遞中要找到被傳遞的數,很多時候,這個數并不能直接給出,需要變化,這就引出了一個概念:如何尋找操作數,我們把尋找操作數所在單元的地址稱之為尋址。在這里我們直接使用數所在單元的地址找到了操作數,所以稱這種方法為直接尋址。除了這種方法之外,還有一種,如果我們把數放在工作寄存器中,從工作寄存器中尋找數據,則稱之為寄存器尋址。例:MOV A,R0就是將R0工作寄存器中的數據送到累加器A中去。提一個問題:我們知道,工作寄存器就是內存單元的一部份,如果我們選擇工作寄存器組0,則R0就是RAM的00H單元,那么這樣一來,MOV A,00H,和MOV A,R0不就沒什么區別了嗎?為什么要加以區分呢?的確,這兩條指令執行的結果是完全相同的,都是將00H單元中的內容送到A中去,但是執行的過程不同,執行第一條指令需要2個周期,而第二條則只需要1個周期,第一條指令變成最終的目標碼要兩個字節(E5H 00H),而第二條則只要一個字節(E8h)就可以了。 這么斤斤計較!不就差了一個周期嗎,如果是12M的晶振的話,也就1個微秒時間了,一個字節又能有多少? 不對,如果這條指令只執行一次,也許無所謂,但一條指令如果執行上1000次,就是1毫秒,如果要執行1000000萬次,就是1S的誤差,這就很可觀了,單片機做的是實時控制的事,所以必須如此“斤斤計較”。字節數同樣如此。 再來提一個問題,現在我們已知,尋找操作數可以通過直接給的方式(立即尋址)和直接給出數所在單元地址的方式(直接尋址),這就夠了嗎? 看這個問題,要求從30H單元開始,取20個數,分別送入A累加器。 就我們目前掌握的辦法而言,要從30H單元取數,就用MOV A,30H,那么下一個數呢?是31H單元的,怎么取呢?還是只能用MOV A,31H,那么20個數,不是得20條指令才能寫完嗎?這里只有20個數,如果要送200個或2000個數,那豈不要寫上200條或2000條命令?這未免太笨了吧。為什么會出現這樣的狀況?是因為我們只會把地址寫在指令中,所以就沒辦法了,如果我們不是把地址直接寫在指令中,而是把地址放在另外一個寄存器單元中,根據這個寄存器單元中的數值決定該到哪個單元中取數據,比如,當前這個寄存器中的值是30H,那么就到30H單元中去取,如果是31H就到31H單元中去取,就可以解決這個問題了。怎么個解決法呢?既然是看的寄存器中的值,那么我們就可以通過一定的方法讓這里面的值發生變化,比如取完一個數后,將這個寄存器單元中的值加1,還是執行同一條指令,可是取數的對象卻不一樣了,不是嗎。通過例子來說明吧。 MOV R7,#20 MOV R0,#30H LOOP:MOV A,@R0 INC R0 DJNZ R7,LOOP 這個例子中大部份指令我們是能看懂的,第一句,是將立即數20送到R7中,執行完后R7中的值應當是20。第二句是將立即數30H送入R0工作寄存器中,所以執行完后,R0單元中的值是30H,第三句,這是看一下R0單元中是什么值,把這個值作為地址,取這個地址單元的內容送入A中,此時,執行這條指令的結果就相當于MOV A,30H。第四句,沒學過,就是把R0中的值加1,因此執行完后,R0中的值就是31H,第五句,學過,將R7中的值減1,看是否等于0,不等于0,則轉到標號LOOP處繼續執行,因此,執行完這句后,將轉去執行MOV A,@R0這句話,此時相當于執行了MOV A,31H(因為此時的R0中的值已是31H了),如此,直到R7中的值逐次相減等于0,也就是循環20次為止,就實現了我們的要求:從30H單元開始將20個數據送入A中。 這也是一種尋找數據的方法,由于數據是間接地被找到的,所以就稱之為間址尋址。注意,在間址尋址中,只能用R0或R1存放等尋找的數據。 二、指令 數據傳遞類指令 1) 以累加器為目的操作數的指令 MOV A,Rn MOV A,direct MOV A,@Ri MOV A,#data 第一條指令中,Rn代表的是R0-R7。第二條指令中,direct就是指的直接地址,而第三條指令中,就是我們剛才講過的。第四條指令是將立即數data送到A中。 下面我們通過一些例子加以說明: MOV A,R1 ;將工作寄存器R1中的值送入A,R1中的值保持不變。 MOV A,30H ;將內存30H單元中的值送入A,30H單元中的值保持不變。 MOV A,@R1 ;先看R1中是什么值,把這個值作為地址,并將這個地址單元中的值送入A中。如執行命令前R1中的值為20H,則是將20H單元中的值送入A中。 MOV A,#34H ;將立即數34H送入A中,執行完本條指令后,A中的值是34H。 2)以寄存器Rn為目的操作的指令 MOV Rn,A MOV Rn,direct MOV Rn,#data 這組指令功能是把源地址單元中的內容送入工作寄存器,源操作數不變。
上傳時間: 2013-10-13
上傳用戶:3294322651
S51編程器制作包:自制AT89S51編程器教程AT89S51芯片的日漸流行,對我們單片機初學者來說是一個大好消息。因為做個AT89S51編程器非常容易,而且串行編程模式更便于做成在線編程器,給頻繁燒片,調試帶來了巨大的方便。 電路: 只要焊13根線就可以搞定這個電路。基本原理:RST置高電平,然后向單片機串行發送 編程命令。P1.7(SCK)輸入移位脈沖,P1.6(MISO)串行輸出,P1.5(MOSI)串行輸入(要了解詳細編程原理可以去看AT89S51的數據手冊)。使用并口發出控制信號,74373只是用于信號轉換,因為并口直接輸出高電平的電壓有點沒到位,使用其他芯片也可以,還有人提出直接接電阻。并口引腳1控制P1.7,引腳14控制P1.5,引腳15讀P1.6,引腳16控制RST,引腳17接74373 LE(鎖存允許),18-25這些引腳都可以接地。建議在你的單片機系統板上做個6芯的接口。注意:被燒寫的單片機一定是最小系統(單片機已經接好電源,晶振,可以運行),VCC,GND是給74373提供電源的。 還有一個方案:使用串口+單片機,這個方案已經用了半年了。電路稍微麻煩一點,速度比較快,而且可以燒AT89C51等等。其實許多器件編程原理差不多,由于我沒太多時間研究器件手冊,更沒有MONEY買一堆芯片來測試,所以只實現了幾個最常用單片機編程功能(AT89C51,C52,C55,AT89S51,S52,S53)。如果要燒寫其他單片機,你可以直接編寫底層控制子程序(例如,寫一個單元,讀一個單元,擦除ROM的子程序)。如果有需要,我可以在器件選擇欄提供一個“X-CHIP”的選擇,“X-CHIP”的編程細節將由用戶自己去實現。當你仔細閱讀器件手冊后,會發現實現這些子程序其實好容易,這也是初學者學單片機編程的好課題。如果成功了會極大的提高你學單片機的積極性。 軟件: 這個軟件的通信,控制部分早在半年前就完成了,這回只是換了個界面和加入并口下載線的功能,希望你看到這個軟件不會想吐。使用很簡當,有一點特別,當你用鼠標右鍵點擊按鈕后,可以把相關操作設置為自動模式(只有打開文件,擦除芯片,寫FLASH ROM,讀FLASH ROM,效驗數據 可以設置),點擊‘自動完成’后會依次完成這些操作,并在開始時檢測芯片。當“打開文件”設為自動后,第2次燒寫同一個文件時不必再去打開文件,軟件會自動刷新緩沖。軟件在WIN XP,WIN 2000可以使用(管理員登陸的),在WIN 98 ,WIN ME使用并口模式時會更快些。這個軟件同時支持串口編程器和并口下載線。操作正常結束后會有聲音提示。如果沒有聲卡或聲卡爛了,則聲音會從機箱揚聲器中發出。注意:記得在CMOS設置中把并口設為ECP模式。就這些東西,應該夠詳細吧,還有什么問題或遇到什么困難可以聯系我,軟件出現什么問題一定要通知我修正。祝你一次就搞定。
上傳時間: 2014-01-24
上傳用戶:13162218709
以AT89C51為核心,采用部分外圍電路,實現對電風扇的智能控制.通過AT89C51對雙向可控硅的控制,可實現風速的無級調速,且可以實現模擬自然風、睡眠風等,通過單片機自身的功能及外接少量電路可實現電風扇的各種定時功能,以及電風扇扇頭的自由升降、波浪式搖頭等各種功能.
上傳時間: 2014-08-29
上傳用戶:xcsx1945
RSA加解密系統及其單芯片實現隨著計算機科技的進步,帶給人類極大的便利性,但伴隨而來的卻是安全性之問題。最簡單便利的安全措施是利用使用者賬號及密碼加以控管,但密碼太短易被破解,密碼太長不便記憶,在網絡上進行傳輸,利用簡單的網絡封包截取工具即可取得相關之使用者賬號及密碼,因此如何使用適當之資安技術以保護網絡上之公開資訊,為一重要之課題。RSA 密碼系統為確保信息安全之一重要機制。本專題利用低成本且取得容易的8051 單芯片實現RSA加解密系統。關鍵詞: 信息安全、8051 單芯片、RSA 密碼系統。
上傳時間: 2013-11-05
上傳用戶:逗逗666
32位MCU(單片機)開發全攻略:本文因為內容很多,分為上下冊,上冊為基礎知識篇,從第一章到第五章,下冊為開發技巧篇,為第六章以后內容。本書可以作為MCU應用工程師、大中專學生或MCU愛好者學習32位MCU開發的參考教材。 1、匯集32位MCU基礎知識與開發工具應用知識,一書在手迅速掌握32位MCU開發!2、首次獨家披露LPC1700系列MCU權威中文開發信息! 3、問答實例結合讓你的開發難題迎刃而解! 隨著節能、高效、綠色理念的深入,32位MCU的應用已呈燎原之勢,有數據顯示僅在過去一年,基于ARM Cortex-M3的MCU的出貨量增長率就達到200%!這些高性能、低功耗的32位MCU廣泛應用于汽車電子、工業應用、醫療電子等領域,而據研究機構預測,中國MCU的可用市場總量(TAM)將從2009年的20億美元增長到2013年的30億美元以上,其增幅為全球水平的兩倍!面對如此誘人的前景,立即學習掌握32位MCU開發基本技巧并將其用于個人設計中已經成為本土工程師的當務之急。 但是,一個有趣的現象是目前有關MCU的圖書中大部分還以8位單片機為主要例舉對象,很多圖書傳授的還是51單片機開發知識,可見在知識需求和供給之間出現了巨大的落差,這也是電子創新網推出《32位MCU開發全攻略》電子書的初衷之一。 基于上述原因,本電子書主要講述32位MCU應用開發知識,對于8位單片機的開發,因為已經有大量書籍,這里不再贅述。本書的第一章主要介紹了嵌入式系統的背景知識、基本概念和目前發展狀況,讓大家對嵌入式系統的發展有大致的了解。第二章主要介紹了微控制器的基本原理、結構和32位ARM MCU供應商的信息。第三章主要介紹了ARM內核的一些特點及ARM指令集。第四章以恩智浦公司的MCU為例詳細介紹了32位ARM MCU的具體結構、功能和特點。第五章是本書的重點內容,以恩智浦的LPC17xx系列MCU為例,分模塊詳細介紹了MCU的應用開發,這些介紹把軟硬件結合在一起,這是本書和其他類似書籍的區別之一。第六章介紹了MCU開發工具及開發流程。第七章我們搜集了多個MCU開發應用實例,通過這些實例,進一步強化MCU開發技巧和系統設計方法。第八章我們以問答的形式介紹MCU開發的技巧,這些問答具有一定的基礎性和代表性,可以幫助工程師解決MCU應用開發中遇到的難題。第九章我們羅列了一些MCU開發資源信息,工程師朋友可以通過鏈接獲得所需的知識。第十章是有關本書的編委信息。第十一章是本書的版權聲明,我們授權工程師朋友和媒體免費下載此書并進行推廣,但是不得以本書切割或進行商業活動。《32位MCU開發全攻略》電子書主編張國斌。
標簽: MCU
上傳時間: 2013-12-18
上傳用戶:wincoder
EZ-USB FX系列單片機USB外圍設備設計與應用:PART 1 USB的基本概念第1章 USB的基本特性1.1 USB簡介21.2 USB的發展歷程31.2.1 USB 1.131.2.2 USB 2.041.2.3 USB與IEEE 1394的比較41.3 USB基本架構與總線架構61.4 USB的總線結構81.5 USB數據流的模式與管線的概念91.6 USB硬件規范101.6.1 USB的硬件特性111.6.2 USB接口的電氣特性121.6.3USB的電源管理141.7 USB的編碼方式141.8 結論161.9 問題與討論16第2章 USB通信協議2.1 USB通信協議172.2 USB封包中的數據域類型182.2.1 數據域位的格式182.3 封包格式192.4 USB傳輸的類型232.4.1 控制傳輸242.4.2 中斷傳輸292.4.3 批量傳輸292.4.4 等時傳輸292.5 USB數據交換格式302.6 USB描述符342.7 USB設備請求422.8 USB設備群組442.9 結論462.10 問題與討論46第3章 設備列舉3.1注冊表編輯器473.2設備列舉的步驟493.3設備列舉步驟的實現--使用CATC分析工具513.4結論613.5問題與討論61第4章 USB芯片與EZUSB4.1USB芯片的簡介624.2USB接口芯片644.2.1Philips接口芯片644.2.2National Semiconductor接口芯片664.3內含USB單元的微處理器684.3.1Motorola694.3.2Microchip694.3.3SIEMENS704.3.4Cypress714.4USB芯片總攬介紹734.5USB芯片的選擇與評估744.6問題與討論80第5章 設備與驅動程序5.1階層式的驅動程序815.2主機的驅動程序835.3驅動程序的選擇865.4結論865.5問題與討論87第6章 HID群組6.1HID簡介886.2HID群組的傳輸速率886.3HID描述符906.3.1報告描述符936.3.2主要 main 項目類型966.3.3整體 global 項目卷標976.3.4區域 local 項目卷標986.3.5簡易的報告描述符996.3.6Descriptor Tool 描述符工具 1006.3.7兼容測試程序1016.4HID設備的基本請求1026.5Windows通信程序1036.6問題與討論106PART 2 硬件技術篇第7章 EZUSB FX簡介7.1簡介1097.2EZUSB FX硬件框圖1097.3封包與PID碼1117.4主機是個主控者1137.4.1從主機接收數據1137.4.2傳送數據至主機1137.5USB方向1137.6幀1147.7EZUSB FX傳輸類型1147.7.1批量傳輸1147.7.2中斷傳輸1147.7.3等時傳輸1157.7.4控制傳輸1157.8設備列舉1167.9USB核心1167.10EZUSB FX單片機1177.11重新設備列舉1177.12EZUSB FX端點1187.12.1EZUSB FX批量端點1187.12.2EZUSB FX控制端點01187.12.3EZUSB FX中斷端點1197.12.4EZUSB FX等時端點1197.13快速傳送模式1197.14中斷1207.15重置與電源管理1207.16EZUSB 2100系列1207.17FX系列--從FIFO1227.18FX系列--GPIF 通用型可程序化的接口 1227.19AN2122/26各種特性的摘要1227.20修訂ID1237.21引腳描述123第8章 EZUSB FX CPU8.1簡介1308.28051增強模式1308.3EZUSB FX所增強的部分1318.4EZUSB FX寄存器接口1318.5EZUSB FX內部RAM1318.6I/O端口1328.7中斷1328.8電源控制1338.9特殊功能寄存器 SFR 1348.10內部總線1358.11重置136第9章 EZUSB FX內存9.1簡介1379.28051內存1389.3擴充的EZUSB FX內存1399.4CS#與OE#信號1409.5EZUSB FX ROM版本141第10章 EZUSB FX輸入/輸出端口10.1簡介14310.2I/O端口14310.3EZUSB輸入/輸出端口寄存器14610.3.1端口配置寄存器14710.3.2I/O端口寄存器14710.4EZUSB FX輸入/輸出端口寄存器14910.5EZUSB FX端口配置表15110.6I2C控制器15610.78051 I2C控制器15610.8控制位15810.8.1START位15810.8.2STOP位15810.8.3LASTRD位15810.9狀態位15910.9.1DONE位15910.9.2ACK位15910.9.3BERR位15910.9.4ID1, ID015910.10送出 WRITE I2C數據16010.11接收 READ I2C數據16010.12I2C激活加載器16010.13SFR尋址 FX 16210.14端口A~E的SFR控制165第11章 EZUSB FX設備列舉與重新設備列舉11.1簡介16711.2預設的USB設備16911.3USB核心對于EP0設備請求的響應17011.4固件下載17111.5設備列舉模式17211.6沒有存在EEPROM17311.7存在著EEPROM, 第一個字節是0xB0 0xB4, FX系列11.8存在著EEPROM, 第一個字節是0xB2 0xB6, FX系列11.9配置字節0,FX系列17711.10重新設備列舉 ReNumerationTM 17811.11多重重新設備列舉 ReNumerationTM 17911.12預設描述符179第12章 EZUSB FX批量傳輸12.1簡介18812.2批量輸入傳輸18912.3中斷傳輸19112.4EZUSB FX批量IN的例子19112.5批量OUT傳輸19212.6端點對19412.7IN端點對的狀態19412.8OUT端點對的狀態19512.9使用批量緩沖區內存19512.10Data Toggle控制19612.11輪詢的批量傳輸的范例19712.12設備列舉說明19912.13批量端點中斷19912.14中斷批量傳輸的范例20112.15設備列舉說明20512.16自動指針器205第13章 EZUSB控制端點013.1簡介20913.2控制端點EP021013.3USB請求21213.3.1取得狀態 Get_Status 21413.3.2設置特性(Set_Feature)21713.3.3清除特性(Clear_Feature)21813.3.4取得描述符(Get_Descriptor)21913.3.5設置描述符(Set Descriptor)22313.3.6設置配置(Set_Configuration)22513.3.7取得配置(Get_Configuration)22513.3.8設置接口(Set_Interface)22513.3.9取得接口(Get_Interface)22613.3.10設置地址(Set_Address)22713.3.11同步幀22713.3.12固件加載228第14章 EZUSB FX等時傳輸14.1簡介22914.2等時IN傳輸23014.2.1初始化設置23014.2.2IN數據傳輸23014.3等時OUT傳輸23114.3.1初始化設置23114.3.2數據傳輸23214.4設置等時FIFO的大小23214.5等時傳輸速度23414.5.1EZUSB 2100系列23414.5.2EZUSB FX系列23514.6快速傳輸 僅存于2100系列 23614.6.1快速寫入23614.6.2快速讀取23714.7快速傳輸的時序 僅存于2100系列 23714.7.1快速寫入波形23814.7.2快速讀取波形23914.8快速傳輸速度(僅存于2100系列)23914.9其余的等時寄存器24014.9.1除能等時寄存器24014.9.20字節計數位24114.10以無數據來響應等時IN令牌24214.11使用等時FIFO242第15章 EZUSB FX中斷15.1簡介24315.2USB核心中斷24415.3喚醒中斷24415.4USB中斷信號源24515.5SUTOK與SUDAV中斷24815.6SOF中斷24915.7中止 suspend 中斷24915.8USB重置中斷24915.9批量端點中斷25015.10USB自動向量25015.11USB自動向量譯碼25115.12I2C中斷25215.13IN批量NAK中斷 僅存于AN2122/26與FX系列 25315.14I2C STOP反相中斷 僅存于AN2122/26與FX系列 25415.15從FIFO中斷 INT4 255第16章 EZUSB FX重置16.1簡介25716.2EZUSB FX打開電源重置 POR 25716.38051重置的釋放25916.3.1RAM的下載26016.3.2下載EEPROM26016.3.3外部ROM26016.48051重置所產生的影響26016.5USB總線重置26116.6EZUSB脫離26216.7各種重置狀態的總結263第17章 EZUSB FX電源管理17.1簡介26517.2中止 suspend 26617.3回復 resume 26717.4遠程喚醒 remote wakeup 269第18章 EZUSB FX系統18.1簡介27118.2DMA寄存器描述27218.2.1來源. 目的. 傳輸長度地址寄存器27218.2.2DMA起始與狀態寄存器27518.2.3DMA同步突發使能寄存器27518.2.4虛擬寄存器27818.3RD/FRD與WR/FWR DMA閃控的選擇27818.4DMA閃控波形與延伸位的交互影響27918.4.1DMA外部寫入27918.4.2DMA外部讀取280第19章 EZUSB FX寄存器19.1簡介28219.2批量數據緩沖區寄存器28319.3等時數據FIFO寄存器28419.4等時字節計數寄存器28519.5CPU寄存器28719.6I/O端口配置寄存器28819.7I/O端口A~C輸入/輸出寄存器28919.8230 Kbaud UART操作--AN2122/26寄存器29119.9等時控制/狀態寄存器29119.10I2C寄存器29219.11中斷29419.12端點0控制與狀態寄存器29919.13端點1~7的控制與狀態寄存器30019.14整體USB寄存器30519.15快速傳輸30919.16SETUP數據31119.17等時FIFO的容量大小31119.18通用I/F中斷使能31219.19通用中斷請求31219.20輸入/輸出端口寄存器D與E31319.20.1端口D輸出31319.20.2輸入端口D腳位31319.20.3端口D輸出使能31319.20.4端口E輸出31319.20.5輸入端口E腳位31419.20.6端口E輸出使能31419.21端口設置31419.22接口配置31419.23端口A與端口C切換配置31619.23.1端口A切換配置#231619.23.2端口C切換配置#231719.24DMA寄存器31919.24.1來源. 目的. 傳輸長度地址寄存器31919.24.2DMA起始與狀態寄存器32019.24.3DMA同步突發使能寄存器32019.24.4選擇8051 A/D總線作為外部FIFO321PART 3 固件技術篇第20章 EZUSB FX固件架構與函數庫20.1固件架構總覽32320.2固件架構的建立32520.3固件架構的副函數鉤子32520.3.1工作分配器32620.3.2設備請求 device request 32620.3.3USB中斷服務例程32920.4固件架構整體變量33220.5描述符表33320.5.1設備描述符33320.5.2配置描述符33420.5.3接口描述符33420.5.4端點描述符33520.5.5字符串描述符33520.5.6群組描述符33520.6EZUSB FX固件的函數庫33620.6.1包含文件 *.H 33620.6.2子程序33620.6.3整體變量33820.7固件架構的原始程序代碼338第21章 EZUSB FX固件范例程序21.1范例程序的簡介34621.2外圍I/O測試程序34721.3端點對, EP_PAIR范例35221.4批量測試, BulkTest范例36221.5等時傳輸, ISOstrm范例36821.6問題與討論373PART 4 實驗篇第22章 EZUSB FX仿真器22?1簡介37522?2所需的工具37622?3EZUSB FX框圖37722.4EZUSB最終版本的系統框圖37822?5第一次下載程序37822.6EZUSB FX開發系統框圖37922.7設置開發環境38022.8EZUSB FX開發工具組的內容38122.9EZUSB FX開發工具組軟件38222.9.1初步安裝程序38222.9.2確認主機 個人計算機 是否支持USB38222.10安裝EZUSB控制平臺. 驅動程序以及文件38322.11EZUSB FX開發電路板38522.11.1簡介38522.11.2開發電路板的瀏覽38522.11.3所使用的8051資源38622.11.4詳細電路38622.11.5LED的顯示38722.11.6Jumper38722.11.7連接器39122.11.8內存映象圖39222.11.9PLD信號39422.11.10PLD源文件文件39522.11.11雛形板的擴充連接器P1~P639722.11.12Philips PCF8574 I/O擴充IC40022.12DMA USB FX I/O LAB開發工具介紹40122.12.1USBFX簡介40122.12.2USBFX及外圍整體環境介紹40322?12?3USBFX與PC連接軟件介紹40422.12.4USBFX硬件功能介紹404第23章 LED顯示器輸出實驗23.1硬件設計與基本概念40923.2固件設計41023.3.1固件架構文件FW.C41123.3.2描述符文件DESCR.A5141223.3.3外圍接口文件PERIPH.C41723.4固件程序代碼的編譯與鏈接42123.5Windows程序, VB設計42323.6INF文件的編寫設計42423.7結論42623.8問題與討論427第24章 七段顯示器與鍵盤的輸入/輸出實驗24.1硬件設計與基本概念42824.2固件設計43124.2.1七段顯示器43124.2.24×4鍵盤掃描43324.3固件程序代碼的編譯與鏈接43424.4Windows程序, VB設計43624.5問題與討論437第25章 LCD文字型液晶顯示器輸出實驗25.1硬件設計與基本概念43825.1.1液晶顯示器LCD43825.2固件設計45225.3固件程序代碼的編譯與鏈接45625.4Windows程序, VB設計45725.5問題與討論458第26章 LED點陣輸出實驗26.1硬件設計與基本概念45926.2固件設計46326.3固件程序代碼的編譯與鏈接46326.4Windows程序, VB設計46526.5問題與討論465第27章 步進電機輸出實驗27.1硬件設計與基本概念46627.1.11相激磁46727.1.22相激磁46727.1.31-2相激磁46827?1?4PMM8713介紹46927.2固件設計47327.3固件程序代碼的編譯與鏈接47427.4Windows程序, VB設計47627.5問題與討論477第28章 I2C接口輸入/輸出實驗28.1硬件設計與基本概念47828.2固件設計48128.3固件程序代碼的編譯與鏈接48328.4Windows程序, VB設計48428.5問題與討論485第29章 A/D轉換器與D/A轉換器的輸入/輸出實驗29.1硬件設計與基本概念48629.1.1A/D轉換器48629.1.2D/A轉換器49029.2固件設計49329.2.1A/D轉換器的固件設計49329.2.2D/A轉換器的固件設計49629.3固件程序代碼的編譯與鏈接49729.4Windows程序, VB設計49829.5問題與討論499第30章 LCG繪圖型液晶顯示器輸出實驗30.1硬件設計與基本概念50030.1.1繪圖型LCD50030.1.2繪圖型LCD控制指令集50330.1.3繪圖型LCD讀取與寫入時序圖50530.2固件設計50630.2.1LCG驅動程序50630.2.2USB固件碼51330.3固件程序代碼的編譯與鏈接51630.4Windows程序, VB設計51730.5問題與討論518附錄A Cypress控制平臺的操作A.1EZUSB控制平臺總覽519A.2主畫面520A.3熱插拔新的USB設備521A.4各種工具欄的使用524A.5故障排除526A.6控制平臺的進階操作527A.7測試Unary Op工具欄上的按鈕功能528A.8測試制造商請求的工具欄 2100 系列的開發電路板 529A.9測試等時傳輸工具欄532A.10測試批量傳輸工具欄533A.11測試重置管線工具欄535A.12測試設置接口工具欄537A.13測試制造商請求工具欄 FX系列開發電路板A.14執行Get Device Descriptor 操作來驗證開發板的功能是否正確539A.15從EZUSB控制平臺中, 加載dev_io的范例并且加以執行540A.16從Keil偵錯應用程序中, 加載dev_io范例程序代碼, 然后再加以執行542A.17將dev_io 目標文件移開, 且使用Keil IDE 集成開發環境 來重建545A.18在偵錯器下執行dev_io目標文件, 并且使用具有偵錯能力的IDE547A.19在EZUSB控制平臺下, 執行ep_pair目標文件A.20如何修改fw范例, 并在開發電路板上產生等時傳輸550附錄BEZUSB 2100系列及EZUSB FX系列引腳表B.1EZUSB 2100系列引腳表555B?2EZUSB FX系列引腳圖表561附錄C EZUSB FX寄存器總覽附錄D EEPROM燒錄方式
上傳時間: 2013-11-21
上傳用戶:努力努力再努力
以PLD器件實現自動掃描去抖的編碼鍵盤設計:鍵盤在單片機控制系統中是最常用的輸入設備之一。雖然非編碼鍵盤的硬件電路較為簡單,但按鍵的識別及鍵值的計算則需軟件來完成,因此需要耗費寶貴的機時;而編碼鍵盤雖然程序簡單且易于使用,但硬件比較復雜。因此,設計人員常常難以決定采用哪一類鍵盤。本文以GAL6002為例,介紹了一種用PLD器件來實現4X4鍵盤自動掃描去抖的編碼鍵盤電路及其設計方法。
上傳時間: 2013-10-17
上傳用戶:yangbo69
電梯的開關門過程是一個變速運動過程 ,需要對電梯門系統的驅動電機進行調速控制;本文提出了一種以高性能單片微機87C196MC 為核心的電梯門機變頻調速控制系統,功率驅動電路采用驅動MOSFET 的專用集成電路IR2130;分析了基于PWM 技術控制電梯門機運行的方法;采用單片微機和功率驅動專用集成電路將門系統電機的交流變頻器和驅動控制器集為一體,得到了一種可靠性高、控制靈活、成本低、體積小的電梯門機控制器。關鍵字:變頻器;正弦脈寬調制;電梯門機系統 電梯的門機系統是電梯的一個非常重要的子系統。門機系統性能的優劣直接關系著整個電梯系統能否正常地運行。所以說,對門機系統的設計開發及制造是電梯系統設計開發及制造的一個關鍵環節。從控制這個角度來說,研究的重點應側重于如何把先進的變頻調速技術應用到門機系統中,使門機系統能高效經濟可靠地運行。在目前的工程實踐中,交流電機的變頻調速策略主要有兩種方法,即正弦脈寬調制方法(SPWM)和空間矢量脈寬調制方法(SVPWM)。其中SPWM 的基本原理就是用正弦波和高頻三角載波比較產生PWM 脈沖序列:當基波(正弦波)高于三角載波時,相應的開關器件導通,反之,當基波低于三角載波時,相應的開關器件截止。產生的PWM 脈沖序列作為逆變器功率開關器件的驅動控制信號。本電梯門機變頻調速系統就是采用SPWM 調制方法,采用INTEL 公司的16 位高性能微控制器87C196MC 作為核心控制芯片,由87C196MC 的PWM 波形發生模塊產生PWM 信號去驅動功率電路,從而帶動門機按照預先設定的運行曲線運行。
上傳時間: 2013-10-16
上傳用戶:zhaoman32