隨著系統(tǒng)芯片(SoC)設(shè)計復(fù)雜度不斷增加,使得縮短面市時間的壓力越來越大。雖然IP核復(fù)用大大減少了SoC的設(shè)計時間,但是SoC的驗證仍然非常復(fù)雜耗時。SoC和ASIC的最大不同之處在于它的規(guī)模和復(fù)雜的系統(tǒng)性,除了大量硬件模塊之外,SoC還需要大量的同件和軟件,如操作系統(tǒng),驅(qū)動程序以及應(yīng)用程序等。面對SoC數(shù)目眾多的硬件模塊,復(fù)雜的嵌入式軟件,由于軟件仿真速度和仿真模犁的局限性,驗證往往難以達(dá)到令人滿意的要求,耗費了大最的時間,將給系統(tǒng)芯片的上市帶來嚴(yán)重的影響。為了減少此類情況的發(fā)生,在流樣片之前,進(jìn)行基于FPGA的系統(tǒng)原型驗證,即在FPGA上快速地實現(xiàn)SoC設(shè)計中的硬件模塊,讓軟件模塊在真正的硬件環(huán)境中高速運行,從而實現(xiàn)SoC設(shè)計的軟硬件協(xié)同驗證。這種方法已經(jīng)成為SoC設(shè)計流程前期階段常用的驗證方法。 在簡要分析幾種業(yè)內(nèi)常用的驗證技術(shù)的基礎(chǔ)上,本文重點闡述了基于FPGA的SoC驗證流程與技術(shù)。結(jié)合Mojox數(shù)碼相機(jī)系統(tǒng)芯片(以下簡稱為Mojox SoC)的FPGA原型驗證平臺的設(shè)計,介紹了Mojox FPGA原型驗證平臺的硬件設(shè)計過程和Mojox SoC的FPGA原型實現(xiàn),并采用基于模塊的FPGA設(shè)計實現(xiàn)方法,加快了原型驗證的工作進(jìn)程。 本文還介紹了Mojox SoC中ARM固件和PC應(yīng)用軟件等原型軟件的設(shè)計實現(xiàn)以及原型驗證平臺的軟硬協(xié)同驗證的過程。通過軟硬協(xié)同驗證,本文實現(xiàn)了PC機(jī)對整個驗證平臺的摔制,達(dá)到了良好的驗證效果,且滿足了預(yù)期的設(shè)計要求。
標(biāo)簽: SoC 系統(tǒng)芯片 原型 驗證技術(shù)
上傳時間: 2013-07-02
上傳用戶:dsgkjgkjg
針對CDMA系統(tǒng)多徑衰落信道條件下采用MATLAB仿真軟件對單用戶RAKE接收機(jī)和多用戶RAKE接收機(jī)之間分別進(jìn)行了仿真。并采用最大比合并、等增益合并、選擇式合并這三種合并方式進(jìn)行比較。給出仿真結(jié)果及誤碼率性能參數(shù)。通過比較三種合并方式的比較得出最大合并比方式更適合RAKE接收機(jī)。通過單用戶與多用戶RAKE接收機(jī)的比較,得出RAKE接收機(jī)更適合于多用戶情況。并通過多用戶間的比較得出增多用戶對同狀態(tài)下信噪比要求增加不大。
上傳時間: 2013-04-24
上傳用戶:stewart·
貼片元件焊接標(biāo)準(zhǔn) 現(xiàn)在越來越多的電路板采用表面貼裝元件,同傳統(tǒng)的封裝相比,它可以減少電路板的面積, 易于大批量加工,布線密度高。
標(biāo)簽: 貼片元件 焊接 標(biāo)準(zhǔn)
上傳時間: 2013-07-20
上傳用戶:kaka
人體血液成份的無創(chuàng)檢測是生物醫(yī)學(xué)領(lǐng)域尚未攻克的前沿課題之一,動態(tài)光譜法在理論上克服了其它檢測方法難以逾越的障礙——個體差異和測量條件對檢測結(jié)果的影響。實現(xiàn)動態(tài)光譜檢測,其關(guān)鍵在于采集多波長的光電容積脈搏波信號,并對其進(jìn)行處理。針對動態(tài)光譜檢測中信號微弱、信噪比低、處理數(shù)據(jù)量大的特點,本文設(shè)計了基于FPGA和面陣CCD攝像頭的動態(tài)光譜數(shù)據(jù)采集與預(yù)處理系統(tǒng),提高檢測精度,采集出滿足動態(tài)光譜信號提取要求的光電脈搏波;并對動態(tài)光譜頻域提取法的核心算法FFT的FPGA實現(xiàn)進(jìn)行研究。 課題提出用高靈敏度的面陣CCD攝像頭替代常規(guī)光柵光譜儀中的光電接收器,實現(xiàn)對多波長的光電容積脈搏波的檢測。結(jié)合面陣CCD的二維圖像特點,采用信號累加法去除噪聲,提高信號的信噪比。 創(chuàng)新性的提出一種不同于以往的信號累加方法——將處于同一行的視頻信號在采樣過程中直接累加,然后再進(jìn)行傳輸和存儲。不同于幀累加和異行累加,這種同行累加方式不但大大的提高了信號的信噪比,同時減小了數(shù)據(jù)的傳輸速度和傳輸量,降低了對存儲器容量的要求,改善了動態(tài)光譜信號檢測系統(tǒng)的性能。 針對面陣CCD攝像頭輸出的復(fù)合視頻信號的特點,設(shè)計視頻信號解調(diào)電路,得到高速、高精度的數(shù)字視頻信號和準(zhǔn)確的視頻同步信號,用于后續(xù)的視頻信號采集與處理。 根據(jù)動態(tài)光譜信號檢測和視頻信號采集的要求,選擇可編程邏輯器件FPGA作為硬件平臺,設(shè)計并實現(xiàn)了基于FPGA和面陣CCD攝像頭的光電脈搏波采集與預(yù)處理系統(tǒng)。該系統(tǒng)實現(xiàn)了視頻信號的精確定位,通過光譜信號的高速同行累加,實現(xiàn)了光電脈搏波信號的高精度檢測。系統(tǒng)采用基于FPGA的Nios II嵌入式處理器系統(tǒng),通過對其應(yīng)用程序的開發(fā),可靠的實現(xiàn)了數(shù)據(jù)的采集、傳輸和存儲,提高了系統(tǒng)的集成度,降低了開發(fā)成本。 為實現(xiàn)動態(tài)光譜信號的頻域提取,研究了基于FPGA的FFT實現(xiàn)方案,對各關(guān)鍵模塊進(jìn)行設(shè)計,為動態(tài)光譜信號的進(jìn)一步處理打下良好的基礎(chǔ)。 最后,通過實驗證明了系統(tǒng)數(shù)據(jù)采集的正確性和信號預(yù)處理的可行性,得到了符合動態(tài)光譜信號提取要求的脈搏波信號。
標(biāo)簽: 動態(tài) 光譜數(shù)據(jù)采集 預(yù)處理
上傳時間: 2013-04-24
上傳用戶:cknck
隨著科學(xué)技術(shù)的發(fā)展,指紋識別技術(shù)被廣泛應(yīng)用到各種不同的領(lǐng)域。對于一般的指紋識別系統(tǒng),其設(shè)計要求具有很高的實時性和易用性,因此識別算法應(yīng)該具有較低的復(fù)雜度,較快的運算速度,從而滿足實時性的要求。所以有必要根據(jù)不同的識別算法采用不同的實現(xiàn)平臺,使得指紋識別系統(tǒng)具有較高的可靠性、實時性、有效性等性能要求。 SOPC片上可編程系統(tǒng)和嵌入式系統(tǒng)是當(dāng)前電子設(shè)計領(lǐng)域中最熱門的概念。NiosⅡ是Altera.公司開發(fā)的一種采用流水線技術(shù)、單指令流的RISC嵌入式處理器軟核,可以將它嵌入到FPGA內(nèi)部,與用戶自定義邏輯組建成一個基于FPGA的片上專用系統(tǒng)。 本文在綜合考慮各種應(yīng)用情況的基礎(chǔ)上,以網(wǎng)絡(luò)技術(shù)、數(shù)據(jù)庫技術(shù)、指紋識別技術(shù)和嵌入式系統(tǒng)技術(shù)為理論基礎(chǔ),提出了一種有效可行的系統(tǒng)架構(gòu)方案。對指紋識別技術(shù)中各個環(huán)節(jié)的算法和原理進(jìn)行了深入研究,合理的改進(jìn)了部分指紋識別算法;同時為了提高系統(tǒng)的實時性,采用NiosⅡ嵌入式處理器和FPGA硬件模塊實現(xiàn)指紋圖像處理主要算法。論文主要包括以下幾個方面: 1、對指紋圖像預(yù)處理、特征提取和特征匹配算法原理進(jìn)行闡述,同時改進(jìn)了指紋圖像的細(xì)化算法,提高了算法的性能,并設(shè)計了一套實用的指紋特征數(shù)據(jù)結(jié)構(gòu); 2、針對指紋圖像預(yù)處理模塊,包括圖像的歸一化、頻率提取、方向提取以及方向濾波,采用基于FPGA的硬件電路的方式實現(xiàn)。實驗結(jié)果表明,在保證系統(tǒng)誤識率較低、可靠性高的基礎(chǔ)上,大大提高了系統(tǒng)的執(zhí)行速度; 3、改變了傳統(tǒng)的單枚指紋識別方法,提出采用多枚指紋唯一標(biāo)識身份,大大降低了識別系統(tǒng)的誤識率; 4、改進(jìn)了傳統(tǒng)的基于三角形匹配中獲取基準(zhǔn)點的方法,同時結(jié)合可變界限盒思想進(jìn)行指紋特征匹配。 5、結(jié)合COM+技術(shù)、數(shù)據(jù)庫技術(shù)和網(wǎng)絡(luò)技術(shù),開發(fā)了后臺指紋特征匹配服務(wù)系統(tǒng),實現(xiàn)了嵌入式指紋識別系統(tǒng)同數(shù)據(jù)庫的實時信息交換。 實驗結(jié)果表明,本文所提出的系統(tǒng)構(gòu)架方案有效可行,基于FPGA的自動指紋識別系統(tǒng)在速度、功耗、擴(kuò)展性等方面具有獨特的優(yōu)勢,擁有廣闊的發(fā)展前景。
標(biāo)簽: FPGA 嵌入式 指紋識別 系統(tǒng)研究
上傳時間: 2013-04-24
上傳用戶:15528028198
隨著語音技術(shù)應(yīng)用的發(fā)展,語音信號數(shù)字處理的實時性要求越來越突出。這就要求在系統(tǒng)設(shè)計中,對系統(tǒng)的硬件環(huán)境要求更高。隨著語音處理算法的日益復(fù)雜,用普通處理器對語音信號進(jìn)行實時處理,已經(jīng)不能滿足需要。專用語音信號處理芯片能解決實時性的要求,同時對器件的資源要求也是最低的。 論文利用Altera公司的新一代可編程邏輯器件在數(shù)字信號處理領(lǐng)域的優(yōu)勢,對語音信號的常用參數(shù)—LPC(線性預(yù)測編碼,Linear Predictive Coding)參數(shù)提取的FPGA(現(xiàn)場可編程門陣列,F(xiàn)ield Programmable Gate Array)實現(xiàn)進(jìn)行了深入研究。論文首先對語音的離散數(shù)學(xué)模型和短時平穩(wěn)特性進(jìn)行了分析,深入討論了語音線性預(yù)測技術(shù)。第二,對解線性預(yù)測方程組的自相關(guān)法和協(xié)方差斜格法進(jìn)行了比較,提出了一種基于協(xié)方差斜格法的LPC參數(shù)提取系統(tǒng)的總體設(shè)計方案。第三,對Altera公司的Cyclon系列可編程器件的內(nèi)部結(jié)構(gòu)進(jìn)行了研究,分析了在QuartusⅡ開發(fā)平臺上進(jìn)行FPGA設(shè)計的流程。第四,對系統(tǒng)的各個功能模塊進(jìn)行了設(shè)計,所有算法通過Verilog硬件描述語言實現(xiàn),并對其工作過程進(jìn)行了詳細(xì)的分析。最后,在Altera FPGA目標(biāo)芯片EP1C6Q240C8上,對LPC參數(shù)提取系統(tǒng)進(jìn)行了仿真驗證。 系統(tǒng)具有靈活的輸入輸出接口,能方便地同其它語音處理模塊相連,構(gòu)成一個完整的語音處理專用芯片,可以應(yīng)用于語音編解碼、語音識別等系統(tǒng)。
上傳時間: 2013-04-24
上傳用戶:TI初學(xué)者
在過去的十幾年間,F(xiàn)PGA取得了驚人的發(fā)展:集成度已達(dá)到1000萬等效門、速度可達(dá)到400~500MHz。隨著FPGA的集成度不斷增大,在高密度FPGA中,芯片上時鐘的分布質(zhì)量就變得越來越重要。時鐘延時和時鐘相位偏移已成為影響系統(tǒng)性能的重要因素。現(xiàn)在,解決時鐘延時問題主要使用時鐘延時補(bǔ)償電路。 為了消除FPGA芯片內(nèi)的時鐘延時,減小時鐘偏差,本文設(shè)計了內(nèi)置于FPGA芯片中的延遲鎖相環(huán),采用一種全數(shù)字的電路結(jié)構(gòu),將傳統(tǒng)DLL中的用模擬方式實現(xiàn)的環(huán)路濾波器和壓控延遲鏈改進(jìn)為數(shù)字方式實現(xiàn)的時鐘延遲測量電路,和延時補(bǔ)償調(diào)整電路,配合特定的控制邏輯電路,完成時鐘延時補(bǔ)償。在輸入時鐘頻率不變的情況下,只需一次調(diào)節(jié)過程即可完成輸入輸出時鐘的同步,鎖定時間較短,噪聲不會積累,抗干擾性好。 在Smic0.18um工藝下,設(shè)計出的時鐘延時補(bǔ)償電路工作頻率范圍從25MHz到300MHz,最大抖動時間為35ps,鎖定時間為13個輸入時鐘周期。另外,完成了時鐘相移電路的設(shè)計,實現(xiàn)可編程相移,為用戶提供與輸入時鐘同頻的相位差為90度,180度,270度的相移時鐘;時鐘占空比調(diào)節(jié)電路的設(shè)計,實現(xiàn)可編程占空比,可以提供占空比為50/50的時鐘信號;時鐘分頻電路的設(shè)計,實現(xiàn)頻率分頻,提供1.5,2,2.5,3,4,5,8,16分頻時鐘。
標(biāo)簽: FPGA 應(yīng)用于 全數(shù)字 鎖相環(huán)
上傳時間: 2013-07-06
上傳用戶:LouieWu
本文研究的視頻處理系統(tǒng)是上海市科委技術(shù)攻關(guān)基金項目“計算機(jī)視覺及其芯片化實現(xiàn)”的一部分,主要完成計算機(jī)視覺系統(tǒng)的一些基本工作,即視頻圖像的采集、預(yù)處理和顯示等。 視頻圖像采集和預(yù)處理系統(tǒng)以Xilinx公司Virtex-ⅡPro系列的FPGA為核心控制器件,結(jié)合視頻模數(shù)轉(zhuǎn)換芯片和VGA顯示器,完成視頻圖像的實時采集、預(yù)處理和顯示。采集和顯示部分作為同外界交流信息的渠道,是構(gòu)成計算機(jī)視覺系統(tǒng)必不可少的一部分;圖像預(yù)處理則是計算機(jī)視覺系統(tǒng)進(jìn)行高層處理的基礎(chǔ),優(yōu)秀的預(yù)處理算法能有效改善圖像質(zhì)量,提高系統(tǒng)分析判斷的準(zhǔn)確性。 本文在介紹基于FPGA的視頻采集、預(yù)處理系統(tǒng)整體架構(gòu)的基礎(chǔ)上,圍繞以下四個方面展開了工作: 1.研究并給出了兩種基于FPGA的設(shè)計方案用于實現(xiàn)YCrCb色度空間到RGB色度空間的轉(zhuǎn)換; 2.針對采集的視頻圖像,根據(jù)VGA顯示的要求,給出了一種實現(xiàn)圖像去隔行的方案; 3.分析了一系列圖像濾波的預(yù)處理算法,如均值濾波、中值濾波和自適應(yīng)濾波等,在比較和總結(jié)各算法特點的基礎(chǔ)上,提出了一種新的適用于處理混合噪聲的濾波算法:混合自適應(yīng)濾波法; 4.根據(jù)算法特點設(shè)計了多種采用FPGA實現(xiàn)的圖像濾波算法,并對硬件算法進(jìn)行RTL級的功能仿真和驗證,還給出了各種濾波算法的實驗結(jié)果,在此基礎(chǔ)上對各種算法的效果進(jìn)行直觀的比較。 文中,預(yù)處理算法的實現(xiàn)充分利用了FPGA的片內(nèi)資源,體現(xiàn)了FPGA在圖像處理方面的特點及優(yōu)勢。同時,視頻采集和顯示的控制模塊也由同一FPGA芯片實現(xiàn),從而簡化了系統(tǒng)整體結(jié)構(gòu)。視頻采集和預(yù)處理系統(tǒng)在FPGA上的成功實現(xiàn)為“計算機(jī)視覺及其芯片化實現(xiàn)”奠定了必要的基礎(chǔ)、提供了一定理論依據(jù)。
上傳時間: 2013-04-24
上傳用戶:我好難過
LM324是四運放集成電路,它采用14腳雙列直插塑料封裝,外形如圖所示。它的內(nèi)部包含四組形式完全相同的運算放大器, 除電源共用外,四組運放相互獨立。每一組運算放大器可用圖1所示的符號來表示,它有5個引出腳,其中“+”、“-”為兩個信號輸入端,“V+”、“V-”為正、負(fù)電源端,“Vo”為輸出端。兩個信號輸入端中,Vi-(-)為反相輸入端,表示運放輸出端Vo的信號與該輸入端的位相反;Vi+(+)為同相輸入端,表示運放輸出端Vo的信號與該輸入端的相位相同。
標(biāo)簽: 324 LM 運算放大器 應(yīng)用電路
上傳時間: 2013-04-24
上傳用戶:eddy77
遺傳算法是一種基于自然選擇原理的優(yōu)化算法,在很多領(lǐng)域有著廣泛的應(yīng)用。但是,遺傳算法使用計算機(jī)軟件實現(xiàn)時,會隨著問題復(fù)雜度和求解精度要求的提高,產(chǎn)生很大的計算延時,這種計算的延時限制了遺傳算法在很多實時性要求較高場合的應(yīng)用。為了提升運行速度,可以使用FPGA作為硬件平臺,設(shè)計數(shù)字系統(tǒng)完成遺傳算法。和軟件實現(xiàn)相比,硬件實現(xiàn)盡管在實時性和并行性方面具有很大優(yōu)勢,但同時會導(dǎo)致系統(tǒng)的靈活性不足、通用性不強(qiáng)。本文針對上述矛盾,使用基于功能的模塊化思想,將基于FPGA的遺傳算法硬件平臺劃分成兩類模塊:系統(tǒng)功能模塊和算子功能模塊。針對不同問題,可以在保持系統(tǒng)功能模塊不變的前提下,選擇不同的遺傳算子功能模塊完成所需要的優(yōu)化運算。本文基于Xilinx公司的Virtex5系列FPGA平臺,使用VerilogHDL語言實現(xiàn)了偽隨機(jī)數(shù)發(fā)生模塊、隨機(jī)數(shù)接口模塊、存儲器接口/控制模塊和系統(tǒng)控制模塊等系統(tǒng)功能模塊,以及基本位交叉算子模塊、PMX交叉算子模塊、基本位變異算子模塊、交換變異算子模塊和逆轉(zhuǎn)變異算子模塊等遺傳算法功能模塊,構(gòu)建了系統(tǒng)功能構(gòu)架和遺傳算子庫。該設(shè)計方法不僅使遺傳算法平臺在解決問題時具有更高的靈活性和通用性,而且維持了系統(tǒng)架構(gòu)的穩(wěn)定。本文設(shè)計了多峰值、不連續(xù)、不可導(dǎo)函數(shù)的極值問題和16座城市的旅行商問題 (TSP)對遺傳算法硬件平臺進(jìn)行了測試。根據(jù)測試結(jié)果,該硬件平臺表現(xiàn)良好,所求取的最優(yōu)解誤差均在1%以內(nèi)。相對于軟件實現(xiàn),該系統(tǒng)在求解一些復(fù)雜問題時,速度可以提高2個數(shù)量級。最后,本文使用FPGA實現(xiàn)了粗粒度并行遺傳算法模型,并用于 TSP問題的求解。將硬件平臺的運行速度在上述基礎(chǔ)上提高了近1倍,取得了顯著的效果。關(guān)鍵詞:遺傳算法,硬件實現(xiàn),并行設(shè)計,F(xiàn)PGA,TSP
標(biāo)簽: FPGA 算法 硬件實現(xiàn)
上傳時間: 2013-06-15
上傳用戶:hakim
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1