隨著科技的發(fā)展和社會的進步,數(shù)字電視已逐漸成為現(xiàn)代電視的主流。利用今年是奧運年的契機,研究和推廣數(shù)字電視廣播具有重大的意義。2006年8月底我國出臺的數(shù)字多媒體/電視廣播(DMB-T)標準,確立了中國自己的技術(shù)標準。以此來發(fā)展擁有自主知識產(chǎn)權(quán)的數(shù)字電視事業(yè),不僅可以滿足廣大人民群眾日益增長的物質(zhì)、文化要求,還可以帶動相關(guān)產(chǎn)業(yè)快速發(fā)展。 本課題在深入研究DMB-T國家標準的基礎(chǔ)上,首先對系統(tǒng)的調(diào)制系統(tǒng)進行了設(shè)計規(guī)劃,然后對信道調(diào)制的星座映射、系統(tǒng)信息插入、幀體數(shù)據(jù)處理、PN序列插入的幀形成模塊和成形濾波模塊進行了設(shè)計和仿真,并驗證了其正確性。 3780個子載波的時域同步正交多載波技術(shù)(TDS-OFDM)是DMB-T調(diào)制系統(tǒng)的關(guān)鍵技術(shù)之一。由于載波數(shù)不是2的整數(shù)次冪,考慮到實現(xiàn)的有效性,不能采用現(xiàn)已成熟的基-2或基-4的快速傅立葉變換(FFT)算法。針對調(diào)制系統(tǒng)中特有的3780點IFFT,課題深入分析和比較了Cooley-Tukey、Winograd和素因子三種離散快速傅立葉變換算法的特點和性能,綜合利用了三種算法優(yōu)勢,考慮了算法的復(fù)雜度、運算的速度、資源的消耗,設(shè)計出一種新的算法,進行了Matlab驗證和基于FPGA(現(xiàn)場可編程門陣列)的仿真。分析表明,該算法所需的加法、乘法次數(shù)已很逼近4096點FFT算法。 DMB-T發(fā)射端的基帶成形濾波采用了平方根升余弦滾降濾波,由于其0.05的滾降系數(shù)在實現(xiàn)中比較苛刻,所以是設(shè)計的難點之一。本課題利用Matlab工具采用了等紋波最優(yōu)濾波的方法設(shè)計了169階數(shù)字濾波器,其阻帶衰減達到了46.9dB,完全符合標準的要求;利用四倍插值的方法實現(xiàn)了I、Q合路的該濾波器的FPGA設(shè)計,并進行了設(shè)計優(yōu)化,顯著降低了濾波器的運算量,大大節(jié)約了實現(xiàn)該濾波器所需的乘法器資源。
上傳時間: 2013-06-28
上傳用戶:camelcamel690
4路無線遙控開關(guān)電路圖與工作原理,省得再去尋找,現(xiàn)成照做就ok。
標簽: 無線遙控 開關(guān)電路圖 工作原理
上傳時間: 2013-06-13
上傳用戶:youlongjian0
隨著圖像處理技術(shù)和投影技術(shù)的不斷發(fā)展,人們對高沉浸感的虛擬現(xiàn)實場景提出了更高的要求,這種虛擬顯示的場景往往由多通道的投影儀器同時在屏幕上投影出多幅高清晰的圖像,再把這些單獨的圖像拼接在一起組成一幅大場景的圖像。而為了給人以逼真的效果,投影的屏幕往往被設(shè)計為柱面屏幕,甚至是球面屏幕。當圖像投影在柱面屏幕的時候就會發(fā)生幾何形狀的變化,而避免這種幾何變形的就是圖像拼接過程中的幾何校正和邊緣融合技術(shù)。 一個大場景可視化系統(tǒng)由投影機、投影屏幕、圖像融合機等主要模塊組成。在虛擬現(xiàn)實應(yīng)用系統(tǒng)中,要實現(xiàn)高臨感的多屏幕無縫拼接以及曲面組合顯示,顯示系統(tǒng)還需要運用幾何數(shù)字變形及邊緣融合等圖像處理技術(shù),實現(xiàn)諸如在平面、柱面、球面等投影顯示面上顯示圖像。而關(guān)鍵設(shè)備在于圖像融合機,它實時采集圖形服務(wù)器,或者PC的圖像信號,通過圖像處理模塊對圖像信息進行幾何校正和邊緣融合,在處理完成后再送到顯示設(shè)備。 本課題提出了一種基于FPGA技術(shù)的圖像處理系統(tǒng)。該系統(tǒng)實現(xiàn)圖像數(shù)據(jù)的AiD采集、圖像數(shù)據(jù)在SRAM以及SDRAM中的存取、圖像在FPGA內(nèi)部的DSP運算以及圖像數(shù)據(jù)的D/A輸出。系統(tǒng)設(shè)計的核心部分在于系統(tǒng)的控制以及數(shù)字信號的處理。本課題采用XilinxVirtex4系列FPGA作為主處理芯片,并利用VerilogHDL硬件描述語言在FPGA內(nèi)部設(shè)計了A/D模塊、D/A模塊、SRAM、SDRAM以及ARM處理器的控制器邏輯。 本課題在FPGA圖像處理系統(tǒng)中設(shè)計了一個ARM處理器模塊,用于上電時對系統(tǒng)在圖像變化處理時所需參數(shù)進行傳遞,并能實時從上位機更新參數(shù)。該設(shè)計在提高了系統(tǒng)性能的同時也便于系統(tǒng)擴展。 本文首先介紹了圖像處理過程中的幾何變化和圖像融合的算法,接著提出了系統(tǒng)的設(shè)計方案及模塊劃分,然后圍繞FPGA的設(shè)計介紹了SDRAM控制器的設(shè)計方法,最后介紹了ARM處理器的接口及外圍電路的設(shè)計。
上傳時間: 2013-04-24
上傳用戶:1047385479
基于AD9833的高精度可編程波形發(fā)生器系統(tǒng)設(shè)計:介紹一種基于AD9833的高精度可編程波形發(fā)生器系統(tǒng)解決方案,該系統(tǒng)具有可編程設(shè)置、波形頻率和峰峰值等功能,從而解決DDS輸出波形峰峰值不能直接
上傳時間: 2013-04-24
上傳用戶:ecooo
光纖水聽器自問世以來,在巨大的軍事價值和民用價值推動下得到了迅速發(fā)展,已逐漸從實驗室研究階段走向工程應(yīng)用。同時隨著光纖水聽器的不斷發(fā)展,對水聲信號的檢測技術(shù)以及數(shù)字處理能力也提出了新的要求。論文在此背景下開展了一系列研究工作,并提出了利用FPGA(Field ProgrammableGate Array,現(xiàn)場可編程門陣列)實現(xiàn)光纖3×3耦合器解調(diào)算法的新思路。 目前干涉型光纖水聽器的解調(diào)一般采用PGC(Phase Generated Carrier,相位生成載波技術(shù))技術(shù)和基于3×3光纖耦合器干涉的解調(diào)技術(shù)。PGC技術(shù)在解調(diào)過程中引入了載波信號,它對采樣率,激光器等的要求都較高,因此我們把目光投向3×3耦合器解調(diào)技術(shù),文中對其解調(diào)原理進行了闡述,對采樣率的確定進行了討論,并對3×3耦合器三路輸出不對稱的情況進行了分析,最后在本文的結(jié)論部分提出了基于3×3耦合器解調(diào)的改良方案。 目前,光纖信號數(shù)字化解調(diào)的硬件實現(xiàn)采用DSP(Digital Signal Process,可編程數(shù)字信號處理器)信號處理機,與之相比,F(xiàn)PGA解調(diào)具有速度快、資源占用少、易于擴展等優(yōu)勢。本文對FPGA與DSP、ASIC(application-specificintegrated circuit,專用集成電路)實現(xiàn)方案進行了對比,分析了適合利用FPGA實現(xiàn)的算法所應(yīng)具備的特征;介紹了3×3耦合器解調(diào)算法中各個模塊的設(shè)計情況;分析了系統(tǒng)的工作情況,硬件的構(gòu)造及芯片的選擇,最后驗證了利用FPGA可以實現(xiàn)3×3耦合器解調(diào)算法。
標簽: 干涉型 光纖水聽器 信號解調(diào) 方法研究
上傳時間: 2013-07-03
上傳用戶:love1314
隨著微電子技術(shù)和計算機技術(shù)的迅猛發(fā)展,尤其是現(xiàn)場可編程器件的出現(xiàn),為滿足實時處理系統(tǒng)的要求,誕生了一種新穎靈活的技術(shù)——可重構(gòu)技術(shù)。它采用實時電路重構(gòu)技術(shù),在運行時根據(jù)需要,動態(tài)改變系統(tǒng)的電路結(jié)構(gòu),從而使系統(tǒng)既有硬件優(yōu)化所能達到的高速度和高效率,又能像軟件那樣靈活可變,易于升級,從而形成可重構(gòu)系統(tǒng)。可重構(gòu)系統(tǒng)的關(guān)鍵在于電路結(jié)構(gòu)可以動態(tài)改變,這就需要有合適的可編程邏輯器件作為系統(tǒng)的核心部件來實現(xiàn)這一功能。 論文利用可重構(gòu)技術(shù)和“FD-ARM7TDMLCSOC”實驗板的可編程資源實現(xiàn)了一個8位微程序控制的“實驗CPU”,將“實驗CPU”與實驗板上的ARMCPU構(gòu)成雙內(nèi)核CPU系統(tǒng),并對雙內(nèi)核CPU系統(tǒng)的工作方式和體系結(jié)構(gòu)進行了初步研究。 首先,文章研究了8位微程序控制CPU的開發(fā)實現(xiàn)。通過設(shè)計實驗CPU的系統(tǒng)邏輯圖,來確定該CPU的指令系統(tǒng),并給出指令的執(zhí)行流程以及指令編碼。“實驗CPU”采用的是微程序控制器的方式來進行控制,因此進行了微程序控制器的設(shè)計,即微指令編碼的設(shè)計和微程序編碼的設(shè)計。為利用可編程資源實現(xiàn)該“實驗CPU”,需對“實驗CPU”進行VHDL描述。 其次,文章進行了“實驗CPU”綜合下載與開發(fā)。文章中使用“Synplicity733”作為綜合工具和“Fastchip3.0”作為開發(fā)工具。將“實驗CPU”的VHDL描述進行綜合以及下載,與實驗箱上的ARMCPU構(gòu)成雙內(nèi)核CPU,實現(xiàn)了基于可重構(gòu)技術(shù)的雙內(nèi)核CPU的系統(tǒng)。根據(jù)實驗板的具體環(huán)境,文章對雙內(nèi)核CPU系統(tǒng)存在的關(guān)鍵問題,如“實驗CPU”的內(nèi)存讀寫問題、微程序控制器的實現(xiàn),以及“實驗CPU'’框架等進行了改進,并通過在開發(fā)工具中添加控制模塊和驅(qū)動程序來實現(xiàn)系統(tǒng)工作方式的控制。 最后,文章對雙核CPU系統(tǒng)進行了功能分析。經(jīng)分析,該系統(tǒng)中兩個CPU內(nèi)核均可正常運行指令、執(zhí)行任務(wù)。利用實驗板上的ARMCPU監(jiān)視用“實驗CPU”的工作情況,如模擬“實驗CPU”的內(nèi)存,實現(xiàn)機器碼運行,通過串行口發(fā)送的指令來完成單步運行、連續(xù)運行、停止、“實驗CPU"指令文件傳送、“實驗CPU"內(nèi)存修改、內(nèi)存察看等工作,所有結(jié)果可顯示在超級終端上。該系統(tǒng)通過利用ARMCPU來監(jiān)控可重構(gòu)CPU,研究雙核CPU之間的通信,嘗試新的體系結(jié)構(gòu)。
上傳時間: 2013-04-24
上傳用戶:royzhangsz
現(xiàn)場可編程門陣列(FPGA)是一種現(xiàn)場可編程專用集成電路,它將門陣列的通用結(jié)構(gòu)與現(xiàn)場可編程的特性結(jié)合于一體,如今,F(xiàn)PGA系列器件已成為最受歡迎的器件之一。隨著FPGA器件的廣泛應(yīng)用,它在數(shù)字系統(tǒng)中的作用日益變得重要,它所要求的準確性也變得更高。因此,對FPGA器件的故障測試和故障診斷方法進行更全面的研究具有重要意義。隨著FPGA器件的迅速發(fā)展,F(xiàn)PGA的密度和復(fù)雜程度也越來越高,使大量的故障難以使用傳統(tǒng)方法進行測試,所以人們把視線轉(zhuǎn)向了可測性設(shè)計(DFT)問題。可測性設(shè)計的提出為解決測試問題開辟了新的有效途徑,而邊界掃描測試方法是其中一個重要的技術(shù)。 本文對FPGA的故障模型及其測試技術(shù)和邊界掃描測試的相關(guān)理論與方法進行了詳細的探討,給出了利用布爾矩陣理論建立的邊界掃描測試過程的數(shù)學(xué)描述和數(shù)學(xué)模型。論文中首先討論邊界掃描測試中的測試優(yōu)化問題,總結(jié)解決兩類優(yōu)化問題的現(xiàn)有算法,分別對它們的優(yōu)缺點進行了對比,進而提出對兩種現(xiàn)有算法的改進思想,并且比較了改進前后優(yōu)化算法的性能。另外,本文還對FPGA連線資源中基于邊界掃描測試技術(shù)的自適應(yīng)完備診斷算法進行了深入研究。在研究過程中,本文基于自適應(yīng)完備診斷的思想對原有自適應(yīng)診斷算法的性能進行了分析,并將獨立測試集和測試矩陣的概念引入原有自適應(yīng)診斷算法中,使改進后的優(yōu)化算法能夠簡化原算法的實現(xiàn)過程,并實現(xiàn)完備診斷的目標。最后利用測試仿真模型證明了優(yōu)化算法能夠更有效地實現(xiàn)完備診斷的目標,在緊湊性指標與測試復(fù)雜性方面比現(xiàn)在算法均有所改進,實現(xiàn)了算法的優(yōu)化。
標簽: FPGA 可測性設(shè)計 方法研究
上傳時間: 2013-06-30
上傳用戶:不挑食的老鼠
數(shù)字射頻存儲器(Digital Radio FreqlJencyr:Memory DRFM)具有對射頻信號和微波信號的存儲、處理及傳輸能力,已成為現(xiàn)代雷達系統(tǒng)的重要部件。現(xiàn)代雷達普遍采用了諸如脈沖壓縮、相位編碼等更為復(fù)雜的信號處理技術(shù),DRFM由于具有處理這些相干波形的能力,被越來越廣泛地應(yīng)用于電子對抗領(lǐng)域作為射頻頻率源。目前,國內(nèi)外對DRFM技術(shù)的研究還處于起步階段,DRFM部件在采樣率、采樣精度及存儲容量等方面,還不能滿足現(xiàn)代雷達信號處理的要求。 本文介紹了DRFM的量化類型、基本組成及其工作原理,在現(xiàn)有的研究基礎(chǔ)上提出了一種便于工程實現(xiàn)的設(shè)計方法,給出了基于現(xiàn)場可編程門陣列(Field Programmable Gate Array FPGA)實現(xiàn)的幅度量化DRFM設(shè)計方案。本方案的采樣率為1 GHz、采樣精度12位,具體實現(xiàn)是采用4個采樣率為250 MHz的ADC并行交替等效時間采樣以達到1 GHz的采樣率。單通道內(nèi)采用數(shù)字正交采樣技術(shù)進行相干檢波,用于保存信號復(fù)包絡(luò)的所有信息。利用FPGA器件實現(xiàn)DRFM的控制器和多路采樣數(shù)據(jù)緩沖器,采用硬件描述語言(Very High Speed}lardware Description Language VHDL)實現(xiàn)了DRFM電路的FPGA設(shè)計和功能仿真、時序分析。方案中采用了大量的低壓差分信號(Low Voltage Differential Signaling LVDS)邏輯的芯片,從而大大降低了系統(tǒng)的功耗,提高了系統(tǒng)工作的可靠性。本文最后對采用的數(shù)字信號處理算法進行了仿真,仿真結(jié)果證明了設(shè)計方案的可行性。 本文提出的基于FPGA的多通道DRFM系統(tǒng)與基于專用FIFO存儲器的DRFM相比,具有更高的性能指標和優(yōu)越性。
上傳時間: 2013-06-01
上傳用戶:lanwei
隨著現(xiàn)代互聯(lián)網(wǎng)規(guī)模的不斷擴大,網(wǎng)絡(luò)數(shù)據(jù)流量迅速增長,傳統(tǒng)的路由器已經(jīng)無法滿足網(wǎng)絡(luò)的交換和路由需求。當前,新一代路由器普遍利用了交換式路由技術(shù),通過使用交換背板以充分利用公共通信鏈路,有效的提高了鏈路的利用率,并使各通信節(jié)點的并行通信成為可能。硬件系統(tǒng)設(shè)計中結(jié)合了專用網(wǎng)絡(luò)處理器,可編程器件各自的特點,采用了基于ASIC,F(xiàn)PGA,CPLD硬件結(jié)構(gòu)模塊化的設(shè)計方法。基于ASIC技術(shù)體系的GSR的出現(xiàn),使得路由器的性能大大提高。但是,這種路由器主要滿足數(shù)據(jù)業(yè)務(wù)(文字,圖象)的傳送要求,不能解決全業(yè)務(wù)(語音,數(shù)據(jù),視頻)數(shù)據(jù)傳送的需要。隨著網(wǎng)絡(luò)規(guī)模的擴大,矛盾越來越突出,而基于網(wǎng)絡(luò)處理器技術(shù)的新一代路由器,從理論上提出了解決GSR所存在問題的解決方案。 基于網(wǎng)絡(luò)路由器技術(shù)實現(xiàn)的路由器,采用交換FPGA芯片硬件實現(xiàn)的方式,對路由器內(nèi)部各種單播、多播數(shù)據(jù)包進行路由轉(zhuǎn)發(fā),實現(xiàn)網(wǎng)絡(luò)路由器與外部數(shù)據(jù)收發(fā)芯片的數(shù)據(jù)通信。本文主要針對路由器內(nèi)部交換FPGA芯片數(shù)據(jù)轉(zhuǎn)發(fā)流程的特點,分析研究了傳統(tǒng)交換FPGA所采用的交換算法,針對簡單FIFO算法所產(chǎn)生的線頭阻塞現(xiàn)象,結(jié)合虛擬輸出隊列(VOQ)機制及隊列仲裁算法(RRM)的特點,并根據(jù)實際設(shè)計中各外圍接口芯片,給出了一種消除數(shù)據(jù)轉(zhuǎn)發(fā)過程中出現(xiàn)的線頭阻塞的iSLIP改進算法。針對實際網(wǎng)絡(luò)單播、多播數(shù)據(jù)包在數(shù)據(jù)轉(zhuǎn)發(fā)處理過程的不同,給出了實際的解決方案。并對FPGA外部SSRAM包緩存帶寬的利用,數(shù)據(jù)轉(zhuǎn)發(fā)的包亂序現(xiàn)象及FPGA內(nèi)部環(huán)回數(shù)據(jù)包的處理流程作了分析并提出了解決方案,有效的提高了路由器數(shù)據(jù)交換性能。 根據(jù)設(shè)計方案所采用的算法的實現(xiàn)方式,結(jié)合FPGA內(nèi)部部分關(guān)鍵模塊的功能特點及性能要求,給出了交換FPGA內(nèi)部可用BlockRam資源合理的分配方案及部分模塊的設(shè)計實現(xiàn),滿足了實際的設(shè)計要求。所有處理模塊均在xilinx公司的FPGA芯片中實現(xiàn)。
標簽: 網(wǎng)絡(luò) 報文交換 算法 路由器
上傳時間: 2013-04-24
上傳用戶:牛布牛
FPGA作為近年來集成電路發(fā)展中最快的分支之一,有關(guān)它的研究和應(yīng)用得到了迅速的發(fā)展。傳統(tǒng)的FPGA采用靜態(tài)配置的方法,所以在它的應(yīng)用生命周期中,它的功能就不能夠再改變,除非重新配置。動態(tài)重配置系統(tǒng)在系統(tǒng)工作的過程中改變FPGA的結(jié)構(gòu),包括全局重配置和局部重配置。其中的局部動態(tài)重配置系統(tǒng)有著ASIC以及靜態(tài)配置FPGA無法比擬的優(yōu)勢。而隨著支持局部位流配置以及動態(tài)配置的商用FPGA的推出,使對局部動態(tài)重配置系統(tǒng)和應(yīng)用的研究有了最基本的硬件支撐條件。而Internet作為無比強大的網(wǎng)絡(luò)已經(jīng)滲入到各種應(yīng)用領(lǐng)域之中。 本文首先提出了一個完整的基于Internet的FPGA局部動態(tài)可重配置系統(tǒng)的方案。然后針對方案的各個組成部分,分別進行了描述。首先是介紹了FPGA的基本概況,包括它的發(fā)展歷史、結(jié)構(gòu)、應(yīng)用領(lǐng)域、發(fā)展趨勢等。然后介紹了對一個包含局部動態(tài)重配置模塊的FPGA系統(tǒng)的設(shè)計過程,包括重配置模塊的定義、設(shè)計的流程、局部位流的產(chǎn)生等。接下來對.FPGA的配置方法以及配置解決方案進行描述,包括幾種可選擇的配置模式,其中有一些適用于靜態(tài)配置,另外一些可以用于動態(tài)局部配置,.以及作為一個系統(tǒng)的配置解決方案。最后系統(tǒng)要求從Internet服務(wù)器上下載重配置模塊的位流并且完成對FPGA的配置,根據(jù)這個要求,我們設(shè)計了相應(yīng)的嵌入式解決方案,包括如何設(shè)計一個基于VxWorks的嵌入式應(yīng)用軟件實現(xiàn)FTP功能,并說明如何通過JTAGG或者ICAP接口由嵌入式CPU完成對FPGA的局部配置。
標簽: FPGA 局部 動態(tài)可重配置
上傳時間: 2013-04-24
上傳用戶:william345
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1