隨著中國二代導(dǎo)航系統(tǒng)的建設(shè),衛(wèi)星導(dǎo)航的應(yīng)用將普及到各個行業(yè),具有自主知識產(chǎn)權(quán)的衛(wèi)星導(dǎo)航接收機的研究與設(shè)計是該領(lǐng)域的一個研究熱點。在接收機的設(shè)計中,對于成熟技術(shù)將利用ASIC芯片進行批量生產(chǎn),該芯片是專用芯片,一旦制造成型不能改變。但是對于正在研究的接收機技術(shù),特別是在需要利用接收機平臺進行提高接收機性能研究時,利用FPGA通用可編程門陣列芯片是非常方便的。在FPGA上的研究成果,一旦成熟可以很方便的移植到ASIC芯片,進行批量生產(chǎn)。本課題就是基于FPGA研究GPS并行捕獲技術(shù)的硬件電路,著重進行了其中一個捕獲通道的設(shè)計和實現(xiàn)。 GPS信號捕獲時間是影響GPS接收機性能的一個關(guān)鍵因素,尤其是在高動態(tài)和實時性要求高的應(yīng)用中或者對弱GPS信號的捕獲方面。因此,本文在滑動相關(guān)法基礎(chǔ)上引出了基于FFT的并行快速捕獲方法,采用自頂向下的方法對系統(tǒng)進行總體功能劃分和結(jié)構(gòu)設(shè)計,并采用自底向上的方法對系統(tǒng)進行功能實現(xiàn)和驗證。 本課題以Xilinx公司的Spartan3E開發(fā)板為硬件開發(fā)平臺,以ISE9.2i為軟件開發(fā)平臺,采用Verilog HDL編程實現(xiàn)該系統(tǒng)。并利用Nemerix公司的GPS射頻芯片NJ1006A設(shè)計制作了GPS中頻信號產(chǎn)生平臺。該平臺可實時地輸出采樣頻率為16.367MHz的GPS數(shù)字中頻信號。 本課題主要是基于采樣率變換和FFT實現(xiàn)對GPS C/A碼的捕獲。該算法利用平均采樣的方法,將信號的采樣率降低到1.024 MHz,在低采樣率下利用成熟的1024點FFT IP核對C/A碼進行粗捕,給出GPS信號的碼相位(精度大約為1/4碼片)和載波的多普勒頻率,符合GPS后續(xù)跟蹤的要求。 同時,由于FFT算法是以資源換取時間的方法來提高GPS捕獲速度的,所以在設(shè)計時,合理地采用FPGA設(shè)計思想與技巧優(yōu)化系統(tǒng)。基于實用性的要求,詳細的給出了基于FFT的GPS并行捕獲各個模塊的實現(xiàn)原理、實現(xiàn)結(jié)構(gòu)以及仿真結(jié)果。并達到降低系統(tǒng)硬件資源,能夠快速、高效地實現(xiàn)對GPS C/A碼捕獲的要求。 本研究是導(dǎo)航研究所承擔(dān)的國家863課題“利用多徑信號提高GNSS接收機性能的新技術(shù)研究”中關(guān)于接收機信號捕獲算法的一部分,對接收機的設(shè)計具有一定的參考價值。
上傳時間: 2013-07-22
上傳用戶:user08x
矩陣運算是描述許多工程問題中不可缺少的數(shù)學(xué)關(guān)系,矩陣運算具有執(zhí)行效率好、速度快、集成度高等優(yōu)點,并且隨著動態(tài)可配置技術(shù)的發(fā)展,靈活性也有了很大的提高。因此,尋找矩陣運算的高速實現(xiàn)方法是具有很大的現(xiàn)實意義,能夠為高速運算應(yīng)用提供技術(shù)支持。 為了提高研究成果的實用性與商用性,本文主要針對某種體積小、運算速度和性能要求很高的特殊場合設(shè)計并實現(xiàn)基于FPGA的矩陣運算功能。通過系統(tǒng)地研究FPGA功能結(jié)構(gòu)、設(shè)計原理、DSP接口、IEEE-754標(biāo)準(zhǔn),深入學(xué)習(xí)浮點數(shù)及矩陣的基礎(chǔ)運算以及硬件編程語言等內(nèi)容,根據(jù)矩陣運算的特點和原理,討論了硬件設(shè)計方面重點對具體核心器件結(jié)構(gòu)、特點以及有關(guān)FPGA的設(shè)計流程和控制器Verilog HDL硬件編程語言代碼方面內(nèi)容,確定了基于FPGA浮點運算及矩陣運算單元的Verilog HDL設(shè)計方法,在Quartus II平臺上對其仿真、記錄運算結(jié)果,并對采集到的數(shù)據(jù)結(jié)果進行了深入分析與總結(jié)。 本設(shè)計通過幾種矩陣算法利用FPGA和MATLAB分別進行了實現(xiàn)測試,驗證了設(shè)計結(jié)果的正確性,證明了本設(shè)計中矩陣運算速率的實用性與高效性,提高了系統(tǒng)資源利用率和系統(tǒng)可靠性,為今后在工程、軍事、通訊等生產(chǎn)生活各個領(lǐng)域應(yīng)用打下良好基礎(chǔ)。
上傳時間: 2013-07-07
上傳用戶:xuanjie
激光打標(biāo)是指利用高能量密度的激光束在物件表面作永久性標(biāo)刻。激光打標(biāo)以其“打標(biāo)速度快、性能穩(wěn)定、打標(biāo)質(zhì)量好”等優(yōu)勢,獲得了日益廣泛的應(yīng)用。傳統(tǒng)的激光打標(biāo)系統(tǒng)一般是基于ISA總線或PCI總線的,運動控制卡必須插在計算機的PCI插槽內(nèi),且不支持熱捅拔,影響了控制卡的穩(wěn)定性;以單片機為主控制器的激光打標(biāo)控制卡雖然成本低、運行可靠,但由于其運算速度慢、存儲容量有限,限制了它的應(yīng)用范圍。 運動控制卡是激光打標(biāo)系統(tǒng)的核心組成部分。本文設(shè)計了一種新型的基于USB總線,以FPGA為主控單元的振鏡掃描式激光打標(biāo)控制卡,它利用了USB總線高速、穩(wěn)定、易用和FPGA資源豐富、處理能力強、易擴展等優(yōu)點,將PC機強大的信息處理能力與運動控制卡的運動控制能力相結(jié)合,具有信息處理能力強、開放程度高、使用方便的特點。 本文首先介紹了激光打標(biāo)的原理,激光打標(biāo)技術(shù)的發(fā)展現(xiàn)狀以及激光打標(biāo)系統(tǒng)的組成結(jié)構(gòu)。在對USB總線技術(shù)作了簡要介紹后,詳細討論了激光打標(biāo)控制卡的硬件電路設(shè)計,包括USB接口電路,F(xiàn)PGA主控單元電路,D/A單元電路,存儲器電路,I/O接口電路等。接著對USB接口單元的固件程序和FPGA中USB接口功能模塊、D/A寫控制功能模塊和SRAM讀寫控制功能模塊的程序做了詳細設(shè)計,通過軟硬件調(diào)試,控制卡實現(xiàn)了USB通信,輸出兩路模擬信號,SRAM數(shù)據(jù)讀寫,數(shù)字量輸入輸出等功能。
標(biāo)簽: FPGA USB 激光打標(biāo)
上傳時間: 2013-04-24
上傳用戶:prczsf
隨著科學(xué)技術(shù)的飛速發(fā)展,電子測量技術(shù)被廣泛應(yīng)用在電子、機械、醫(yī)療、測控及航天等各個領(lǐng)域,而電子測量技術(shù)要用到各種形式的高質(zhì)量信號源,因此任意波形發(fā)生器的研制就具有非常重要的現(xiàn)實意義。 本文便是基于DDS(DirectDigitalSynthesis)技術(shù)進行任意波形發(fā)生器研制的。要求可以產(chǎn)生正弦波、方波、三角波與鋸齒波等常規(guī)波形,而且能夠產(chǎn)生任意波形,從而滿足研究的需要。具體工作如下: (一)介紹國內(nèi)外關(guān)于任意波形發(fā)生器研究的發(fā)展情況,闡述頻率合成技術(shù)的各種方式與技術(shù)對比情況,并選定直接數(shù)字頻率合成技術(shù)進行研制。 (二)介紹系統(tǒng)的硬件設(shè)計構(gòu)成與功能實現(xiàn),并對系統(tǒng)部件進行逐一細述。選用單片機作為控制模塊,使用FPGA實現(xiàn)DDS功能作為技術(shù)核心,并對外圍電路的設(shè)計與接口技術(shù)進行分析。 (三)講述DDS的工作原理、工作特點與技術(shù)指標(biāo),并基于FPGA芯片EP1C3T144C8進行設(shè)計,通過使用相位累加器與波形ROM等模塊,實現(xiàn)DDS功能。同時輔以使能模塊與行列式鍵盤,實現(xiàn)各種波形的靈活輸出。 (四)給出系統(tǒng)產(chǎn)生的測試數(shù)據(jù),并對影響頻譜純度的雜散與噪聲產(chǎn)生的原因進行分析。
標(biāo)簽: FPGA 任意波形發(fā)生器
上傳時間: 2013-04-24
上傳用戶:diets
作為電子類專業(yè)學(xué)生,實驗是提高學(xué)生對所學(xué)知識的印象以及發(fā)現(xiàn)問題和解決問題的能力,增加學(xué)生動手能力的必須環(huán)節(jié)。本設(shè)計的目的就是開發(fā)一套滿足學(xué)生實驗需求的信號源,基于此目的本信號源并不需要突出的性能,但經(jīng)濟上要求低成本,同時要求操作簡單,能夠輸出多種波形,并且利于學(xué)生在此平臺上認識信號源原理,同時方便在此平臺上進行拓展開發(fā)。 設(shè)計中運用虛擬儀器技術(shù)將計算機屏幕作為儀器面板,采用EPP接口,同時在FPGA上開發(fā)控制電路,為后續(xù)開發(fā)留下了空間,同時節(jié)省了成本。本設(shè)計采用地址線16位,數(shù)據(jù)線12位的靜態(tài)RAM作為信號源的波形存儲器,后端采用兩種濾波類型對需要濾波的信號進行濾波。啟動信號時軟件需要先將波形數(shù)據(jù)預(yù)存在存儲器中便于調(diào)用,最后得到的結(jié)果基本滿足教學(xué)實驗的需求。 本文結(jié)構(gòu)上首先介紹了直接采用DDS芯片制作信號源的利弊,及作者采用這種設(shè)計的初衷,然后介紹了信號源的整體結(jié)構(gòu),總體模塊。以下章節(jié)首先介紹FPGA內(nèi)部設(shè)計,包括總體結(jié)構(gòu)和幾大部分模塊,包括:時鐘產(chǎn)生電路,相位累加器,數(shù)據(jù)輸入控制電路,濾波器控制電路,信號源啟動控制電路。 然后介紹了其他模塊的設(shè)計,包括存儲器選擇,幅度控制電路的設(shè)計以及濾波器電路的設(shè)計,本設(shè)計的幅度控制采用兩級DA級聯(lián),以及后端電阻分壓網(wǎng)絡(luò)調(diào)節(jié)的方式進行設(shè)計,提高了幅度調(diào)節(jié)的范圍。對于濾波器的設(shè)計,依據(jù)不同的信號頻率,分成了4個部分,對于500K以下的信號采用的是二階巴特沃斯有源低通濾波,對于500K以上至5M以下信號采用的五階RC低通濾波器。 在軟件設(shè)計部分,分成兩個部分,對于底層驅(qū)動程序采用以Labwindows/CVI為平臺進行開發(fā),利用其編譯和執(zhí)行速度快,并且和LabVIEW能夠很好連接的特性。對于上層控制軟件,采用以LabVIEW為平臺進行開發(fā),充分利用其圖化設(shè)計,易于擴展。 論文最后對所做工作進行了總結(jié),提出了進一步改進的方向。
上傳時間: 2013-04-24
上傳用戶:afeiafei309
隨著社會的發(fā)展,人們對電力需求特別是電能質(zhì)量的要求越來越高。但由于非線性負荷大量使用,卻帶來了嚴重的電力諧波污染,給電力系統(tǒng)安全、穩(wěn)定、高效運行帶來嚴重影響,給供用電設(shè)備造成危害。如何最大限度的減少諧波造成的危害,是目前電力系統(tǒng)領(lǐng)域極為關(guān)注的問題。諧波檢測是諧波研究中重要分支,是解決其它相關(guān)諧波問題的基礎(chǔ)。因此,對諧波的檢測和研究,具有重要的理論意義和實用價值。 目前使用的電力系統(tǒng)諧波檢測裝置,大多基于微處理器設(shè)計。微處理器是作為整個系統(tǒng)的核心,它的性能高低直接決定了產(chǎn)品性能的好壞。而這種微處理器為主體構(gòu)成的應(yīng)用系統(tǒng),存在效率低、資源利用率低、程序指針易受干擾等缺點。由于微電子技術(shù)的發(fā)展,特別是專用集成電路ASIC(ApplicationSpecificIntegratedCircuit)設(shè)計技術(shù)的發(fā)展,使得設(shè)計電力系統(tǒng)諧波檢測專用的集成電路成為可能,同時為諧波檢測裝置的硬件設(shè)計提供了一個新的發(fā)展途徑。本文目標(biāo)就是設(shè)計電力系統(tǒng)諧波檢測專用集成電路,從而可以實現(xiàn)對電力系統(tǒng)諧波的高精度檢測。采用專用集成電路進行諧波檢測裝置的硬件設(shè)計,具有體積小,速度快,可靠性高等優(yōu)點,由于應(yīng)用范圍廣,需求量大,電力系統(tǒng)諧波檢測專用集成電路具有很好的應(yīng)用前景。 本文首先介紹了國內(nèi)外現(xiàn)行諧波檢測標(biāo)準(zhǔn),調(diào)研了電力系統(tǒng)諧波檢測的發(fā)展趨勢;隨后根據(jù)裝置的功能需求,特別是依據(jù)其中諧波檢測國標(biāo)參數(shù)的測量算法,為系統(tǒng)選定了基于FPGA的SOPC設(shè)計方案。 本文分析了電力系統(tǒng)諧波檢測專用集成電路的功能模型,對專用集成電路進行了模塊劃分。定義了各模塊的功能,并研究了模塊間的連接方式,給出了諧波檢測專用集成電路的并行結(jié)構(gòu)。設(shè)計了基于FPGA的諧波檢測專用集成電路設(shè)計和驗證的硬件平臺。配合專用集成電路的電子設(shè)計自動化(EDA)工具構(gòu)建了智能監(jiān)控單元專用集成電路的開發(fā)環(huán)境。 在進行FPGA具體設(shè)計時,根據(jù)待實現(xiàn)功能的不同特點,分為用戶邏輯區(qū)域和Nios處理器模塊兩個部分。用戶邏輯區(qū)域控制A/D轉(zhuǎn)換器進行模擬信號的采樣,并對采樣得到的數(shù)字量進行諧波分析等運算。然后將結(jié)果存入片內(nèi)的雙口RAM中,等待Nios處理器的訪問。Nios處理器對數(shù)據(jù)處理模塊的結(jié)果進一步處理,得到其各自對應(yīng)的最終值,并將結(jié)果通過串行通信接口發(fā)送給上位機。 最后,對設(shè)計實體進行了整體的編譯、綜合與優(yōu)化工作,并通過邏輯分析儀對設(shè)計進行了驗證。在實驗室條件下,對監(jiān)測指標(biāo)的運算結(jié)果進行了實驗測量,實驗結(jié)果表明該監(jiān)測裝置滿足了電力系統(tǒng)諧波檢測的總體要求。
標(biāo)簽: FPGA 電力系統(tǒng) 諧波檢測
上傳時間: 2013-04-24
上傳用戶:yw14205
隨著數(shù)字時代的到來,信息化程度的不斷提高,人們相互之間的信息和數(shù)據(jù)交換日益增加。正交幅度調(diào)制器(QAM Modulator)作為一種高頻譜利用率的數(shù)字調(diào)制方式,在數(shù)字電視廣播、固定寬帶無線接入、衛(wèi)星通信、數(shù)字微波傳輸?shù)葘拵ㄐ蓬I(lǐng)域得到了廣泛應(yīng)用。 近年來,集成電路和數(shù)字通信技術(shù)飛速發(fā)展,F(xiàn)PGA作為集成度高、使用方便、代碼可移植性等優(yōu)點的通用邏輯開發(fā)芯片,在電子設(shè)計行業(yè)深受歡迎,市場占有率不斷攀升。本文研究基于FPGA與AD9857實現(xiàn)四路QAM調(diào)制的全過程。FPGA實現(xiàn)信源處理、信道編碼輸出四路基帶I/Q信號,AD9857實現(xiàn)對四路I/Q信號的調(diào)制,輸出中頻信號。本文具體內(nèi)容總結(jié)如下: 1.介紹國內(nèi)數(shù)字電視發(fā)展?fàn)顩r、國內(nèi)國際的數(shù)字電視標(biāo)準(zhǔn),并詳細介紹國內(nèi)有線電視的系統(tǒng)組成及QAM調(diào)制器的發(fā)展過程。 2.研究了QAM調(diào)制原理,其中包括信源編碼、TS流標(biāo)準(zhǔn)格式轉(zhuǎn)換、信道編碼的原理及AD9857的工作原理等。并著重研究了信道編碼過程,包括能量擴散、RS編碼、數(shù)據(jù)交織、星座映射與差分編碼等。 3.深入研究了基于FPAG與AD9857電路設(shè)計,其中包括詳細研究了FPGA與AD9857的電路設(shè)計、在allegro下的PCB設(shè)計及光繪文件的制作,并做成成品。 4.簡單介紹了FPGA的開發(fā)流程。 5.深入研究了基于FPAG代碼開發(fā),其中主要包括I2C接口實現(xiàn),ASI到SPI的轉(zhuǎn)換,信道編碼中的TS流包處理、能量擴散、RS編碼、數(shù)據(jù)交織、星座映射與差分編碼的實現(xiàn)及AD9857的FPGA控制使其實現(xiàn)四路QAM的調(diào)制。 6.介紹代碼測試、電路測試及系統(tǒng)指標(biāo)測試。 最終系統(tǒng)指標(biāo)測試表明基于FPGA與AD9857的四路DVB-C調(diào)制器基本達到了國標(biāo)的要求。
上傳時間: 2013-04-24
上傳用戶:sn2080395
目前對數(shù)字化音頻處理的具體實現(xiàn)主要集中在以DSP或?qū)S肁SIC芯片為核心的處理平臺的開發(fā)方面,存在著并行處理性能差,系統(tǒng)升級和在線配置不靈活等缺點。另一方面現(xiàn)有解決方案的設(shè)計主要集中于處理器芯片,而對于音頻編解碼芯片的關(guān)注度較低,而且沒有提出過從芯片層到PCB板層的完整設(shè)計思路。本文針對上述問題對數(shù)字化音頻處理平臺進行了研究,主要內(nèi)容包括: 1、提出了基于FPGA的通用音頻處理平臺,該方案有別于現(xiàn)有的基于MCU、DSP和其它專用ASIC芯片的方案,論證了基于FPGA的音頻處理系統(tǒng)的結(jié)構(gòu)及設(shè)計工作流程,并對嵌入式音頻處理系統(tǒng)專門進行了研究。 2、提出了從芯片層到PCB板層的完整設(shè)計思路,并將設(shè)計思路得以實現(xiàn)。完成了FPGA的設(shè)計及實現(xiàn)過程,包括:系統(tǒng)整體分析,設(shè)計流程分析,配置模塊和數(shù)據(jù)通信模塊的RTL實現(xiàn)等;解決了FPGA與音頻編解碼芯片TLV320AIC23B之間接口不匹配問題;給出配置和數(shù)據(jù)通信模塊的功能方框圖;從多個角度完善PCB板設(shè)計,給出了各個系統(tǒng)組成部分的詳細設(shè)計方案和硬件電路原理圖,并附有PCB圖。 3、建立了實驗和分析環(huán)境,完成了各項實驗和分析工作,主要包括:PCB板信號完整性分析和優(yōu)化,F(xiàn)PGA系統(tǒng)中各個功能模塊的實驗與分析等。實驗和分析結(jié)果論證了系統(tǒng)設(shè)計的合理性和實用性。 本文的研究與實現(xiàn)工作通過實驗和分析得到了驗證。結(jié)果表明,本文提出的由FPGA和音頻編解碼芯片TLV320AIC23B組成的數(shù)字化音頻處理系統(tǒng)完全可以實現(xiàn)音頻信號的數(shù)字化處理,從而可以將FPGA在數(shù)字信號處理領(lǐng)域的優(yōu)點充分發(fā)揮于音頻信號處理領(lǐng)域。
上傳時間: 2013-04-24
上傳用戶:lanwei
視頻監(jiān)控一直是人們關(guān)注的應(yīng)用技術(shù)熱點之一,它以其直觀、方便、信息內(nèi)容豐富而被廣泛用于在電視臺、銀行、商場等場合。在視頻圖像監(jiān)控系統(tǒng)中,經(jīng)常需要對多路視頻信號進行實時監(jiān)控,如果每一路視頻信號都占用一個監(jiān)視器屏幕,則會大大增加系統(tǒng)成本。視頻圖像畫面分割器主要功能是完成多路視頻信號合成一路在監(jiān)視器顯示,是視頻監(jiān)控系統(tǒng)的核心部分。 傳統(tǒng)的基于分立數(shù)字邏輯電路甚至DSP芯片設(shè)計的畫面分割器的體積較大且成本較高。為此,本文介紹了一種基于FPGA技術(shù)的視頻圖像畫面分割器的設(shè)計與實現(xiàn)。 本文對視頻圖像畫面分割技術(shù)進行了分析,完成了基于ITU-RBT.656視頻數(shù)據(jù)格式的畫面分割方法設(shè)計;系統(tǒng)采用Xilinx公司的FPGA作為核心控制器,設(shè)計了視頻圖像畫面分割器的硬件電路,該電路在FPGA中,將數(shù)字電路集成在一起,電路結(jié)構(gòu)簡潔,具有較好的穩(wěn)定性和靈活性;在硬件電路平臺基礎(chǔ)上,以四路視頻圖像分割為例,完成了I2C總線接口模塊,異步FIFO模塊,有效視頻圖像數(shù)據(jù)提取模塊,圖像存儲控制模塊和圖像合成模塊的設(shè)計,首先,由攝像頭采集四路模擬視頻信號,經(jīng)視頻解碼芯片轉(zhuǎn)換為數(shù)字視頻圖像信號后送入異步FIFO緩沖。然后,根據(jù)畫面分割需要進行視頻圖像數(shù)據(jù)抽取,并將抽取的視頻圖像數(shù)據(jù)按照一定的規(guī)則存儲到圖像存儲器。最后,按照數(shù)字視頻圖像的數(shù)據(jù)格式,將四路視頻圖像合成一路編碼輸出,實現(xiàn)了四路視頻圖像分割的功能。從而驗證了電路設(shè)計和分割方法的正確性。 本文通過由FPGA實現(xiàn)多路視頻圖像的采集、存儲和合成等邏輯控制功能,I2C總線對兩片視頻解碼器進行動態(tài)配置等方法,實現(xiàn)四路視頻圖像的輪流采集、存儲和圖像的合成,提高了系統(tǒng)集成度,并可根據(jù)系統(tǒng)需要修改設(shè)計和進一步擴展功能,同時提高了系統(tǒng)的靈活性。
上傳時間: 2013-04-24
上傳用戶:gundan
運動控制技術(shù)是機電一體化的核心部分,提高運動控制技術(shù)水平對于提高我國的機電一體化技術(shù)具有至關(guān)重要的作用。運動控制技術(shù)的發(fā)展是制造自動化前進的旋律,是推動新的產(chǎn)業(yè)革命的關(guān)鍵技術(shù)。對于數(shù)控系統(tǒng)來說,最重要的是控制各個電機軸的運動,這是運動控制器接收并依照數(shù)控裝置的指令來控制各個電機軸運動從而實現(xiàn)數(shù)控加工的,數(shù)據(jù)加工中的定位控制精度、速度調(diào)節(jié)的性能等重要指標(biāo)都與運動控制器直接相關(guān)。目前對數(shù)控系統(tǒng)的研究都集中在插入PC的NC控制器的研究上,而其核心部分就是對步進、伺服電機進行控制的運動控制卡的研究。對PC-NC來說,運動控制卡的性能很大程度上決定了整個數(shù)控系統(tǒng)的性能,而微電子和數(shù)字信號處理技術(shù)的發(fā)展及其應(yīng)用,使運動控制卡的性能得到了不斷改進,集成度和可靠性大大提高。 本課題通過對運動控制技術(shù)的深入研究,并針對國內(nèi)運動控制技術(shù)的研究起步較晚的現(xiàn)狀,結(jié)合當(dāng)前運動控制領(lǐng)域的具體需要,緊跟當(dāng)前運動控制技術(shù)研究的發(fā)展趨勢,吸收了數(shù)控技術(shù)和相關(guān)運動控制技術(shù)的最新成果,提出了基于PCI和FPGA的方案,研制了一款比較新穎的、功能強大的、具有很大柔性的四軸多功能運動控制卡。 本課題的具體研究主要有以下幾方面: 首先,通過對運動控制卡及運動控制系統(tǒng)等行業(yè)現(xiàn)狀的全面調(diào)研,和對運動控制技術(shù)的深入學(xué)習(xí),在比較了幾種常用的運動控制方案的基礎(chǔ)上,提出了基于FPGA的運動控制設(shè)計方案,并規(guī)劃了板卡的總體設(shè)計。 其次,根據(jù)總體設(shè)計,規(guī)劃了板卡的結(jié)構(gòu),詳細劃分并實現(xiàn)了FPGA各部分的功能;利用光電隔離原理設(shè)計了數(shù)字輸入/輸出電路。 再次,利用FPGA的資源實現(xiàn)了PCI從設(shè)備接口,達到跟控制卡通信的目的,針對運動控制中的一些具體問題,如運動平穩(wěn)性、實時控制以及多軸聯(lián)動等,在FPGA上設(shè)計了四軸運動控制電路,定義了各個寄存器的具體功能,設(shè)計了功能齊全的加/減速控制電路、變頻分配電路、倍頻分頻電路和三個功能各異的計數(shù)器電路等,自動降速點運動、A/B相編碼器倍頻計數(shù)電路等特殊功能。最后,進行了本運動控制卡的測試,從測試和應(yīng)用結(jié)果來看,該卡達到預(yù)期的要求。
上傳時間: 2013-07-27
上傳用戶:zgu489
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1