亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊(cè)

多媒體指令

  • 高速SOC單片機(jī)C8051F

    基于半導(dǎo)體集成技術(shù)的突飛猛進(jìn)的發(fā)展各種類型的單片機(jī)正日新月異的涌向市場(chǎng)為單片機(jī)技術(shù)的應(yīng)用人員提供了極大的方便INTEL公司在MCS48系列的基礎(chǔ)上推出高性能的MCS51系列八位單片機(jī)而今三十二位單片機(jī)又以其強(qiáng)大的片內(nèi)功能提供給應(yīng)用者無論是那一種位數(shù)的單片機(jī)也無論是那一種系列的單片機(jī)都為新產(chǎn)品的開發(fā)應(yīng)用系統(tǒng)的研制智能控制器的研究高新技術(shù)的應(yīng)用創(chuàng)造了極其有力的硬件環(huán)境當(dāng)前可以說由于世界各生產(chǎn)廠家生產(chǎn)通用型以及衍生出的五花八門的系列及型號(hào)的單片機(jī)使其單片機(jī)技術(shù)的應(yīng)用已達(dá)到了無孔不入的地步當(dāng)初面向工業(yè)控制功能的單片機(jī)現(xiàn)已遠(yuǎn)遠(yuǎn)超出了原設(shè)計(jì)者的想像然而占全球單片機(jī)銷量60%65%左右的八位單片機(jī)仍是當(dāng)前應(yīng)用的主流就國內(nèi)應(yīng)用實(shí)踐而言使用單片機(jī)數(shù)量最大的是八位單片機(jī)應(yīng)用范圍最廣的是八位單片機(jī)八位單片機(jī)仍具有時(shí)代的魅力INTEL公司推出的高性能MCS51系列八位單片機(jī)一投入市場(chǎng)里很快被使用者所歡迎隨著時(shí)間的推移世界各生產(chǎn)單片機(jī)的公司看好MCS51系列八位單片機(jī)的強(qiáng)勁趨勢(shì)在八位單片機(jī)的設(shè)計(jì)上紛紛向51系列八位單片機(jī)內(nèi)核靠攏PHILIPS公司首先購買了8051內(nèi)核的使用權(quán)并在此基礎(chǔ)上增加具有自身特點(diǎn)的I2C總線PHILIPS公司并推出一系列高性能具有快閃存儲(chǔ)器的標(biāo)準(zhǔn)的80C51派生型八位機(jī)單片機(jī)很方便的多次在線編程為用戶帶來極大方便ATMEL公司通過技術(shù)交換取得了80C31內(nèi)核的使用權(quán)生產(chǎn)出AT89C系列單片機(jī)SIEMENS公司SABC5系列八位單片機(jī)C500CPU與80C51完全兼容臺(tái)灣WINBOND公司生產(chǎn)的W78系列八位單片機(jī)南韓LG半導(dǎo)體公司生產(chǎn)GMS90/97系列八位單片機(jī)也都與標(biāo)準(zhǔn)的8051兼容由北京集成電路設(shè)計(jì)中心設(shè)計(jì)的BT/AT89C51也與MCS51系列八位單片機(jī)在指令系統(tǒng)和引腳上完全兼容總部位于美國德克薩斯州的美國Cygnal公司是1999年3月成立的一家新興的半導(dǎo)體公司公司專業(yè)從事混合信號(hào)片上系統(tǒng)單片機(jī)的設(shè)計(jì)與制造公司看好了八位單片機(jī)的市場(chǎng)前景至目前更新了原51單片機(jī)結(jié)構(gòu)設(shè)計(jì)了具有自主產(chǎn)權(quán)的CIP-51內(nèi)核使得51單片機(jī)煥發(fā)了新的生命力其運(yùn)行速度高達(dá)每秒25MIPS現(xiàn)已設(shè)計(jì)并為市場(chǎng)提供了29個(gè)品種的C8051F系列片上系統(tǒng)單片機(jī)預(yù)計(jì)今年年內(nèi)還將完成20多個(gè)新的片上系統(tǒng)單片機(jī)的設(shè)計(jì)經(jīng)過3年的穩(wěn)步發(fā)展已成長為半導(dǎo)體業(yè)界一顆耀眼的新星Cygnal C8051F系列單片機(jī)由沈陽新華龍電子有限公司于2001年引進(jìn)中國大陸并于11月2001嵌入式系統(tǒng)及單片機(jī)國際學(xué)術(shù)交流會(huì)暨產(chǎn)品展示會(huì)上首次亮相受到與會(huì)者的極大關(guān)注

    標(biāo)簽: C8051F SOC 單片機(jī)

    上傳時(shí)間: 2013-10-09

    上傳用戶:xitai

  • 一種基于C8051F單片機(jī)的直流無刷電機(jī)轉(zhuǎn)速控制系統(tǒng)

    具有梯形反電動(dòng)勢(shì)的永磁同步電動(dòng)機(jī)通常被稱為無刷直流電動(dòng)機(jī),它具有結(jié)構(gòu)簡單、體積小、重量輕、效率高、高功率密度、啟動(dòng)扭矩大、慣量小和響應(yīng)快等其它種類直流電機(jī)無法比擬的特性。采用電子換向器替代了傳統(tǒng)直流電動(dòng)機(jī)的機(jī)械換向裝置,從而克服了電刷和換向器所引起的噪聲、火花、電磁干擾、壽命短等一系列弊病。由于無刷直流電動(dòng)機(jī)既具備交流電動(dòng)機(jī)的結(jié)構(gòu)簡單、運(yùn)行可靠、維護(hù)方便等一系列優(yōu)點(diǎn),又具  有直流電動(dòng)機(jī)的運(yùn)行效率高、無勵(lì)磁損耗以及調(diào)速性能好等諸多優(yōu)點(diǎn),故其在在家用消費(fèi)類產(chǎn)品(空調(diào)、冰箱、洗衣機(jī))和IT周邊產(chǎn)品(打印機(jī)、軟驅(qū)、硬驅(qū))中得到廣泛的應(yīng)用。    C8051F單片機(jī)是美國Silabs公司推出的一種與51系列單片機(jī)內(nèi)核兼容的單片機(jī),具有高速、高性能、高集成度。以C8051F020為例,具有如下特點(diǎn):    C8051F020片上系統(tǒng)單片機(jī)片內(nèi)資源:    一、模塊外設(shè)    (1)逐次逼近型8路12位ADC0    轉(zhuǎn)換速率最大100ksps    可編程增益放大器PGA    溫度傳感器    (2)8路8位ADC1輸入與P1口復(fù)用    轉(zhuǎn)換速率500ksps   可編程增益放大器PGA    (3)兩個(gè)12 位DAC    (4)兩個(gè)模擬電壓比較器    (5)電壓基準(zhǔn)內(nèi)部提供2.43V    外部基準(zhǔn)可輸入    (6)精確的VDD監(jiān)視器    二、高速8051微控制器內(nèi)核    流水線式指令結(jié)構(gòu)速度可達(dá)25MIPS    22個(gè)矢量中斷源    三、存儲(chǔ)器    片內(nèi)4352字節(jié)數(shù)據(jù)RAM    64KBFlash程序存儲(chǔ)器可作非易失性存儲(chǔ)

    標(biāo)簽: C8051F 單片機(jī) 直流無刷 電機(jī)轉(zhuǎn)速

    上傳時(shí)間: 2013-12-21

    上傳用戶:bnfm

  • cygnal單片機(jī)教程

    C8051Fxxx 系列單片機(jī)是完全集成的混合信號(hào)系統(tǒng)級(jí)芯片,具有與8051 兼容的微控制器內(nèi)核,與MCS-51 指令集完全兼容。除了具有標(biāo)準(zhǔn)8052 的數(shù)字外設(shè)部件之外,片內(nèi)還集成了數(shù)據(jù)采集和控制系統(tǒng)中常用的模擬部件和其它數(shù)字外設(shè)及功能部件。參見表1.1 的產(chǎn)品選擇指南可快速查看每個(gè)MCU 的特性。 MCU 中的外設(shè)或功能部件包括模擬多路選擇器、可編程增益放大器、ADC、DAC、電壓比較器、電壓基準(zhǔn)、溫度傳感器、SMBus/ I2C、UART、SPI、可編程計(jì)數(shù)器/定時(shí)器陣列(PCA)、定時(shí)器、數(shù)字I/O 端口、電源監(jiān)視器、看門狗定時(shí)器(WDT)和時(shí)鐘振蕩器等。所有器件都有內(nèi)置的FLASH 程序存儲(chǔ)器和256 字節(jié)的內(nèi)部RAM,有些器件內(nèi)部還有位于外部數(shù)據(jù)存儲(chǔ)器空間的RAM,即XRAM。C8051Fxxx 單片機(jī)采用流水線結(jié)構(gòu),機(jī)器周期由標(biāo)準(zhǔn)的12 個(gè)系統(tǒng)時(shí)鐘周期降為1 個(gè)系統(tǒng)時(shí)鐘周期,處理能力大大提高,峰值性能可達(dá)25MIPS。C8051Fxxx 單片機(jī)是真正能獨(dú)立工作的片上系統(tǒng)(SOC)。每個(gè)MCU 都能有效地管理模擬和數(shù)字外設(shè),可以關(guān)閉單個(gè)或全部外設(shè)以節(jié)省功耗。FLASH 存儲(chǔ)器還具有在系統(tǒng)重新編程能力,可用于非易失性數(shù)據(jù)存儲(chǔ),并允許現(xiàn)場(chǎng)更新8051 固件。應(yīng)用程序可以使用MOVC 和MOVX 指令對(duì)FLASH 進(jìn)行讀或改寫,每次讀或?qū)懸粋€(gè)字節(jié)。這一特性允許將程序存儲(chǔ)器用于非易失性數(shù)據(jù)存儲(chǔ)以及在軟件控制下更新程序代碼。片內(nèi)JTAG 調(diào)試支持功能允許使用安裝在最終應(yīng)用系統(tǒng)上的產(chǎn)品MCU 進(jìn)行非侵入式(不占用片內(nèi)資源)、全速、在系統(tǒng)調(diào)試。該調(diào)試系統(tǒng)支持觀察和修改存儲(chǔ)器和寄存器,支持?jǐn)帱c(diǎn)、單步、運(yùn)行和停機(jī)命令。在使用JTAG 調(diào)試時(shí),所有的模擬和數(shù)字外設(shè)都可全功能運(yùn)行。每個(gè)MCU 都可在工業(yè)溫度范圍(-45℃到+85℃)內(nèi)用2.7V-3.6V(F018/019 為2.8V-3.6V)的電壓工作。端口I/O、/RST 和JTAG 引腳都容許5V 的輸入信號(hào)電壓。

    標(biāo)簽: cygnal 單片機(jī)教程

    上傳時(shí)間: 2013-11-14

    上傳用戶:jiangshandz

  • 多功能數(shù)字鐘電路圖

    多功能數(shù)字鐘, 自從它發(fā)明的那天起,就成為人類的朋友,但隨著時(shí)間的推移,人們對(duì)它的功能又提出了新的要求,怎樣讓時(shí)鐘更好的為人民服務(wù),怎樣讓我們的老朋友煥發(fā)青春呢?這就要求人們不斷設(shè)計(jì)出新型時(shí)鐘。本方案設(shè)計(jì)的多功能電子鐘除了傳統(tǒng)的顯示時(shí)間功能之外還可以測(cè)試溫度、電網(wǎng)頻率、電壓、并提供了過壓報(bào)警、非接觸止鬧等功能。其中溫度采用AD590溫度傳感器電路測(cè)得,非接觸止鬧則采用紅外控制技術(shù)實(shí)現(xiàn)。

    標(biāo)簽: 多功能 數(shù)字 鐘電路

    上傳時(shí)間: 2014-12-28

    上傳用戶:elinuxzj

  • atmega8原理與應(yīng)用手冊(cè)

    atmega8原理與及應(yīng)用手冊(cè),ATmega8 是ATMEL公司在2002年第一季度推出的一款新型AVR高檔單片機(jī)。在AVR家族中,ATmega8是一種非常特殊的單片機(jī),它的芯片內(nèi)部集成了較大 容量的存儲(chǔ)器和豐富強(qiáng)大的硬件接口電路,具備AVR高檔單片機(jī)MEGE系列的全部性能和特點(diǎn)。但由于采用了小引腳封裝(為DIP 28和TQFP/MLF32),所以其價(jià)格僅與低檔單片機(jī)相當(dāng),再加上AVR單片機(jī)的系統(tǒng)內(nèi)可編程特性,使得無需購買昂貴的仿真器和編程器也可進(jìn)行單片機(jī) 嵌入式系統(tǒng)的設(shè)計(jì)和開發(fā),同時(shí)也為單片機(jī)的初學(xué)者提供了非常方便和簡捷的學(xué)習(xí)開發(fā)環(huán)境。    ATmega8的這些特點(diǎn),使其成為一款具有極高性能價(jià)格比的單片機(jī),深受廣大單片機(jī)用戶的喜愛,在產(chǎn)品應(yīng)用市場(chǎng)上極具競爭力,被很多家用電器廠商和儀器儀表行業(yè)看中,從而使ATmega8迅速進(jìn)入大批量的應(yīng)用領(lǐng)域。    ATmega系列單片機(jī)屬于AVR中的高檔產(chǎn)品,它承襲了AT90所具有的特點(diǎn),并在AT90(如 AT9058515、AT9058535)的基礎(chǔ)上,增加了更多的接口功能,而且在省電性能。穩(wěn)定性、抗干擾性以及靈活性方面考慮得更加周全和完善。    ATmega8 是一款采用低功耗CMOS工藝生產(chǎn)的基于AVR RISC結(jié)構(gòu)的8位單片機(jī)。AVR單片機(jī)的核心是將32個(gè)工作寄存器和豐富的指令集聯(lián)結(jié)在一起,所有的工作寄存器都與ALU(算術(shù)邏輯單元)直接相連,實(shí) 現(xiàn)了在一個(gè)時(shí)鐘周期內(nèi)執(zhí)行的一條指令同時(shí)訪問(讀寫)兩個(gè)獨(dú)立寄存器的操作。這種結(jié)構(gòu)提高了代碼效率,使得大部分指令的執(zhí)行時(shí)間僅為一個(gè)時(shí)鐘周期。因此, ATmega8可以達(dá)到接近1MIPS/MHz的性能,運(yùn)行速度比普通CISC單片機(jī)高出10倍。

    標(biāo)簽: atmega8 應(yīng)用手冊(cè)

    上傳時(shí)間: 2013-11-08

    上傳用戶:朗朗乾坤

  • MCS-51指令表

    MCS-51指令表.chm

    標(biāo)簽: MCS 51 指令表

    上傳時(shí)間: 2013-10-20

    上傳用戶:alex wang

  • 單片機(jī)應(yīng)用系統(tǒng)抗干擾技術(shù)

    單片機(jī)應(yīng)用系統(tǒng)抗干擾技術(shù):第1章 電磁干擾控制基礎(chǔ). 1.1 電磁干擾的基本概念1 1.1.1 噪聲與干擾1 1.1.2 電磁干擾的形成因素2 1.1.3 干擾的分類2 1.2 電磁兼容性3 1.2.1 電磁兼容性定義3 1.2.2 電磁兼容性設(shè)計(jì)3 1.2.3 電磁兼容性常用術(shù)語4 1.2.4 電磁兼容性標(biāo)準(zhǔn)6 1.3 差模干擾和共模干擾8 1.3.1 差模干擾8 1.3.2 共模干擾9 1.4 電磁耦合的等效模型9 1.4.1 集中參數(shù)模型9 1.4.2 分布參數(shù)模型10 1.4.3 電磁波輻射模型11 1.5 電磁干擾的耦合途徑14 1.5.1 傳導(dǎo)耦合14 1.5.2 感應(yīng)耦合(近場(chǎng)耦合)15 .1.5.3 電磁輻射耦合(遠(yuǎn)場(chǎng)耦合)15 1.6 單片機(jī)應(yīng)用系統(tǒng)電磁干擾控制的一般方法16 第2章 數(shù)字信號(hào)耦合與傳輸機(jī)理 2.1 數(shù)字信號(hào)與電磁干擾18 2.1.1 數(shù)字信號(hào)的開關(guān)速度與頻譜18 2.1.2 開關(guān)暫態(tài)電源尖峰電流噪聲22 2.1.3 開關(guān)暫態(tài)接地反沖噪聲24 2.1.4 高速數(shù)字電路的EMI特點(diǎn)25 2.2 導(dǎo)線阻抗與線間耦合27 2.2.1 導(dǎo)體交直流電阻的計(jì)算27 2.2.2 導(dǎo)體電感量的計(jì)算29 2.2.3 導(dǎo)體電容量的計(jì)算31 2.2.4 電感耦合分析32 2.2.5 電容耦合分析35 2.3 信號(hào)的長線傳輸36 2.3.1 長線傳輸過程的數(shù)學(xué)描述36 2.3.2 均勻傳輸線特性40 2.3.3 傳輸線特性阻抗計(jì)算42 2.3.4 傳輸線特性阻抗的重復(fù)性與阻抗匹配44 2.4 數(shù)字信號(hào)傳輸過程中的畸變45 2.4.1 信號(hào)傳輸?shù)娜肷浠?5 2.4.2 信號(hào)傳輸?shù)姆瓷浠?6 2.5 信號(hào)傳輸畸變的抑制措施49 2.5.1 最大傳輸線長度的計(jì)算49 2.5.2 端點(diǎn)的阻抗匹配50 2.6 數(shù)字信號(hào)的輻射52 2.6.1 差模輻射52 2.6.2 共模輻射55 2.6.3 差模和共模輻射比較57 第3章 常用元件的可靠性能與選擇 3.1 元件的選擇與降額設(shè)計(jì)59 3.1.1 元件的選擇準(zhǔn)則59 3.1.2 元件的降額設(shè)計(jì)59 3.2 電阻器60 3.2.1 電阻器的等效電路60 3.2.2 電阻器的內(nèi)部噪聲60 3.2.3 電阻器的溫度特性61 3.2.4 電阻器的分類與主要參數(shù)62 3.2.5 電阻器的正確選用66 3.3 電容器67 3.3.1 電容器的等效電路67 3.3.2 電容器的種類與型號(hào)68 3.3.3 電容器的標(biāo)志方法70 3.3.4 電容器引腳的電感量71 3.3.5 電容器的正確選用71 3.3.6 電容器使用注意事項(xiàng)73 3.4 電感器73 3.4.1 電感器的等效電路74 3.4.2 電感器使用的注意事項(xiàng)74 3.5 數(shù)字集成電路的抗干擾性能75 3.5.1 噪聲容限與抗干擾能力75 3.5.2 施密特集成電路的噪聲容限77 3.5.3 TTL數(shù)字集成電路的抗干擾性能78 3.5.4 CMOS數(shù)字集成電路的抗干擾性能79 3.5.5 CMOS電路使用中注意事項(xiàng)80 3.5.6 集成門電路系列型號(hào)81 3.6 高速CMOS 54/74HC系列接口設(shè)計(jì)83 3.6.1 54/74HC 系列芯片特點(diǎn)83 3.6.2 74HC與TTL接口85 3.6.3 74HC與單片機(jī)接口85 3.7 元器件的裝配工藝對(duì)可靠性的影響86 第4章 電磁干擾硬件控制技術(shù) 4.1 屏蔽技術(shù)88 4.1.1 電場(chǎng)屏蔽88 4.1.2 磁場(chǎng)屏蔽89 4.1.3 電磁場(chǎng)屏蔽91 4.1.4 屏蔽損耗的計(jì)算92 4.1.5 屏蔽體屏蔽效能的計(jì)算99 4.1.6 屏蔽箱的設(shè)計(jì)100 4.1.7 電磁泄漏的抑制措施102 4.1.8 電纜屏蔽層的屏蔽原理108 4.1.9 屏蔽與接地113 4.1.10 屏蔽設(shè)計(jì)要點(diǎn)113 4.2 接地技術(shù)114 4.2.1 概述114 4.2.2 安全接地115 4.2.3 工作接地117 4.2.4 接地系統(tǒng)的布局119 4.2.5 接地裝置和接地電阻120 4.2.6 地環(huán)路問題121 4.2.7 浮地方式122 4.2.8 電纜屏蔽層接地123 4.3 濾波技術(shù)126 4.3.1 濾波器概述127 4.3.2 無源濾波器130 4.3.3 有源濾波器138 4.3.4 鐵氧體抗干擾磁珠143 4.3.5 貫通濾波器146 4.3.6 電纜線濾波連接器149 4.3.7 PCB板濾波器件154 4.4 隔離技術(shù)155 4.4.1 光電隔離156 4.4.2 繼電器隔離160 4.4.3 變壓器隔離 161 4.4.4 布線隔離161 4.4.5 共模扼流圈162 4.5 電路平衡結(jié)構(gòu)164 4.5.1 雙絞線在平衡電路中的使用164 4.5.2 同軸電纜的平衡結(jié)構(gòu)165 4.5.3 差分放大器165 4.6 雙絞線的抗干擾原理及應(yīng)用166 4.6.1 雙絞線的抗干擾原理166 4.6.2 雙絞線的應(yīng)用168 4.7 信號(hào)線間的串?dāng)_及抑制169 4.7.1 線間串?dāng)_分析169 4.7.2 線間串?dāng)_的抑制173 4.8 信號(hào)線的選擇與敷設(shè)174 4.8.1 信號(hào)線型式的選擇174 4.8.2 信號(hào)線截面的選擇175 4.8.3 單股導(dǎo)線的阻抗分析175 4.8.4 信號(hào)線的敷設(shè)176 4.9 漏電干擾的防止措施177 4.10 抑制數(shù)字信號(hào)噪聲常用硬件措施177 4.10.1 數(shù)字信號(hào)負(fù)傳輸方式178 4.10.2 提高數(shù)字信號(hào)的電壓等級(jí)178 4.10.3 數(shù)字輸入信號(hào)的RC阻容濾波179 4.10.4 提高輸入端的門限電壓181 4.10.5 輸入開關(guān)觸點(diǎn)抖動(dòng)干擾的抑制方法181 4.10.6 提高器件的驅(qū)動(dòng)能力184 4.11 靜電放電干擾及其抑制184 第5章 主機(jī)單元配置與抗干擾設(shè)計(jì) 5.1 單片機(jī)主機(jī)單元組成特點(diǎn)186 5.1.1 80C51最小應(yīng)用系統(tǒng)186 5.1.2 低功耗單片機(jī)最小應(yīng)用系統(tǒng)187 5.2 總線的可靠性設(shè)計(jì)191 5.2.1 總線驅(qū)動(dòng)器191 5.2.2 總線的負(fù)載平衡192 5.2.3 總線上拉電阻的配置192 5.3 芯片配置與抗干擾193 5.3.1去耦電容配置194 5.3.2 數(shù)字輸入端的噪聲抑制194 5.3.3 數(shù)字電路不用端的處理195 5.3.4 存儲(chǔ)器的布線196 5.4 譯碼電路的可靠性分析197 5.4.1 過渡干擾與譯碼選通197 5.4.2 譯碼方式與抗干擾200 5.5 時(shí)鐘電路配置200 5.6 復(fù)位電路設(shè)計(jì)201 5.6.1 復(fù)位電路RC參數(shù)的選擇201 5.6.2 復(fù)位電路的可靠性與抗干擾分析202 5.6.3 I/O接口芯片的延時(shí)復(fù)位205 5.7 單片機(jī)系統(tǒng)的中斷保護(hù)問題205 5.7.1 80C51單片機(jī)的中斷機(jī)構(gòu)205 5.7.2 常用的幾種中斷保護(hù)措施205 5.8 RAM數(shù)據(jù)掉電保護(hù)207 5.8.1 片內(nèi)RAM數(shù)據(jù)保護(hù)207 5.8.2 利用雙片選的外RAM數(shù)據(jù)保護(hù)207 5.8.3 利用DS1210實(shí)現(xiàn)外RAM數(shù)據(jù)保護(hù)208 5.8.4 2 KB非易失性隨機(jī)存儲(chǔ)器DS1220AB/AD211 5.9 看門狗技術(shù)215 5.9.1 由單穩(wěn)態(tài)電路實(shí)現(xiàn)看門狗電路216 5.9.2 利用單片機(jī)片內(nèi)定時(shí)器實(shí)現(xiàn)軟件看門狗217 5.9.3 軟硬件結(jié)合的看門狗技術(shù)219 5.9.4 單片機(jī)內(nèi)配置看門狗電路221 5.10 微處理器監(jiān)控器223 5.10.1 微處理器監(jiān)控器MAX703~709/813L223 5.10.2 微處理器監(jiān)控器MAX791227 5.10.3 微處理器監(jiān)控器MAX807231 5.10.4 微處理器監(jiān)控器MAX690A/MAX692A234 5.10.5 微處理器監(jiān)控器MAX691A/MAX693A238 5.10.6 帶備份電池的微處理器監(jiān)控器MAX1691242 5.11 串行E2PROM X25045245 第6章 測(cè)量單元配置與抗干擾設(shè)計(jì) 6.1 概述255 6.2 模擬信號(hào)放大器256 6.2.1 集成運(yùn)算放大器256 6.2.2 測(cè)量放大器組成原理260 6.2.3 單片集成測(cè)量放大器AD521263 6.2.4 單片集成測(cè)量放大器AD522265 6.2.5 單片集成測(cè)量放大器AD526266 6.2.6 單片集成測(cè)量放大器AD620270 6.2.7 單片集成測(cè)量放大器AD623274 6.2.8 單片集成測(cè)量放大器AD624276 6.2.9 單片集成測(cè)量放大器AD625278 6.2.10 單片集成測(cè)量放大器AD626281 6.3 電壓/電流變換器(V/I)283 6.3.1 V/I變換電路..283 6.3.2 集成V/I變換器XTR101284 6.3.3 集成V/I變換器XTR110289 6.3.4 集成V/I變換器AD693292 6.3.5 集成V/I變換器AD694299 6.4 電流/電壓變換器(I/V)302 6.4.1 I/V變換電路302 6.4.2 RCV420型I/V變換器303 6.5 具有放大、濾波、激勵(lì)功能的模塊2B30/2B31305 6.6 模擬信號(hào)隔離放大器313 6.6.1 隔離放大器ISO100313 6.6.2 隔離放大器ISO120316 6.6.3 隔離放大器ISO122319 6.6.4 隔離放大器ISO130323 6.6.5 隔離放大器ISO212P326 6.6.6 由兩片VFC320組成的隔離放大器329 6.6.7 由兩光耦組成的實(shí)用線性隔離放大器333 6.7 數(shù)字電位器及其應(yīng)用336 6.7.1 非易失性數(shù)字電位器x9221336 6.7.2 非易失性數(shù)字電位器x9241343 6.8 傳感器供電電源的配置及抗干擾346 6.8.1 傳感器供電電源的擾動(dòng)補(bǔ)償347 6.8.2 單片集成精密電壓芯片349 6.8.3 A/D轉(zhuǎn)換器芯片提供基準(zhǔn)電壓350 6.9 測(cè)量單元噪聲抑制措施351 6.9.1 外部噪聲源的干擾及其抑制351 6.9.2 輸入信號(hào)串模干擾的抑制352 6.9.3 輸入信號(hào)共模干擾的抑制353 6.9.4 儀器儀表的接地噪聲355 第7章 D/A、A/D單元配置與抗干擾設(shè)計(jì) 7.1 D/A、A/D轉(zhuǎn)換器的干擾源357 7.2 D/A轉(zhuǎn)換原理及抗干擾分析358 7.2.1 T型電阻D/A轉(zhuǎn)換器359 7.2.2 基準(zhǔn)電源精度要求361 7.2.3 D/A轉(zhuǎn)換器的尖峰干擾362 7.3 典型D/A轉(zhuǎn)換器與單片機(jī)接口363 7.3.1 并行12位D/A轉(zhuǎn)換器AD667363 7.3.2 串行12位D/A轉(zhuǎn)換器MAX5154370 7.4 D/A轉(zhuǎn)換器與單片機(jī)的光電接口電路377 7.5 A/D轉(zhuǎn)換器原理與抗干擾性能378 7.5.1 逐次比較式ADC原理378 7.5.2 余數(shù)反饋比較式ADC原理378 7.5.3 雙積分ADC原理380 7.5.4 V/F ADC原理382 7.5.5 ∑Δ式ADC原理384 7.6 典型A/D轉(zhuǎn)換器與單片機(jī)接口387 7.6.18 位并行逐次比較式MAX 118387 7.6.28 通道12位A/D轉(zhuǎn)換器MAX 197394 7.6.3 雙積分式A/D轉(zhuǎn)換器5G14433399 7.6.4 V/F轉(zhuǎn)換器AD 652在A/D轉(zhuǎn)換器中的應(yīng)用403 7.7 采樣保持電路與抗干擾措施408 7.8 多路模擬開關(guān)與抗干擾措施412 7.8.1 CD4051412 7.8.2 AD7501413 7.8.3 多路開關(guān)配置與抗干擾技術(shù)413 7.9 D/A、A/D轉(zhuǎn)換器的電源、接地與布線416 7.10 精密基準(zhǔn)電壓電路與噪聲抑制416 7.10.1 基準(zhǔn)電壓電路原理417 7.10.2 引腳可編程精密基準(zhǔn)電壓源AD584418 7.10.3 埋入式齊納二極管基準(zhǔn)AD588420 7.10.4 低漂移電壓基準(zhǔn)MAX676/MAX677/MAX678422 7.10.5 低功率低漂移電壓基準(zhǔn)MAX873/MAX875/MAX876424 7.10.6 MC1403/MC1403A、MC1503精密電壓基準(zhǔn)電路430 第8章 功率接口與抗干擾設(shè)計(jì) 8.1 功率驅(qū)動(dòng)元件432 8.1.1 74系列功率集成電路432 8.1.2 75系列功率集成電路433 8.1.3 MOC系列光耦合過零觸發(fā)雙向晶閘管驅(qū)動(dòng)器435 8.2 輸出控制功率接口電路438 8.2.1 繼電器輸出驅(qū)動(dòng)接口438 8.2.2 繼電器—接觸器輸出驅(qū)動(dòng)電路439 8.2.3 光電耦合器—晶閘管輸出驅(qū)動(dòng)電路439 8.2.4 脈沖變壓器—晶閘管輸出電路440 8.2.5 單片機(jī)與大功率單相負(fù)載的接口電路441 8.2.6 單片機(jī)與大功率三相負(fù)載間的接口電路442 8.3 感性負(fù)載電路噪聲的抑制442 8.3.1 交直流感性負(fù)載瞬變?cè)肼暤囊种品椒?42 8.3.2 晶閘管過零觸發(fā)的幾種形式445 8.3.3 利用晶閘管抑制感性負(fù)載的瞬變?cè)肼?47 8.4 晶閘管變流裝置的干擾和抑制措施448 8.4.1 晶閘管變流裝置電氣干擾分析448 8.4.2 晶閘管變流裝置的抗干擾措施449 8.5 固態(tài)繼電器451 8.5.1 固態(tài)繼電器的原理和結(jié)構(gòu)451 8.5.2 主要參數(shù)與選用452 8.5.3 交流固態(tài)繼電器的使用454 第9章 人機(jī)對(duì)話單元配置與抗干擾設(shè)計(jì) 9.1 鍵盤接口抗干擾問題456 9.2 LED顯示器的構(gòu)造與特點(diǎn)458 9.3 LED的驅(qū)動(dòng)方式459 9.3.1 采用限流電阻的驅(qū)動(dòng)方式459 9.3.2 采用LM317的驅(qū)動(dòng)方式460 9.3.3 串聯(lián)二極管壓降驅(qū)動(dòng)方式462 9.4 典型鍵盤/顯示器接口芯片與單片機(jī)接口463 9.4.1 8位LED驅(qū)動(dòng)器ICM 7218B463 9.4.2 串行LED顯示驅(qū)動(dòng)器MAX 7219468 9.4.3 并行鍵盤/顯示器專用芯片8279482 9.4.4 串行鍵盤/顯示器專用芯片HD 7279A492 9.5 LED顯示接口的抗干擾措施502 9.5.1 LED靜態(tài)顯示接口的抗干擾502 9.5.2 LED動(dòng)態(tài)顯示接口的抗干擾506 9.6 打印機(jī)接口與抗干擾技術(shù)508 9.6.1 并行打印機(jī)標(biāo)準(zhǔn)接口信號(hào)508 9.6.2 打印機(jī)與單片機(jī)接口電路509 9.6.3 打印機(jī)電磁干擾的防護(hù)設(shè)計(jì)510 9.6.4 提高數(shù)據(jù)傳輸可靠性的措施512 第10章 供電電源的配置與抗干擾設(shè)計(jì) 10.1 電源干擾問題概述513 10.1.1 電源干擾的類型513 10.1.2 電源干擾的耦合途徑514 10.1.3 電源的共模和差模干擾515 10.1.4 電源抗干擾的基本方法516 10.2 EMI電源濾波器517 10.2.1 實(shí)用低通電容濾波器518 10.2.2 雙繞組扼流圈的應(yīng)用518 10.3 EMI濾波器模塊519 10.3.1 濾波器模塊基礎(chǔ)知識(shí)519 10.3.2 電源濾波器模塊521 10.3.3 防雷濾波器模塊531 10.3.4 脈沖群抑制模塊532 10.4 瞬變干擾吸收器件532 10.4.1 金屬氧化物壓敏電阻(MOV)533 10.4.2 瞬變電壓抑制器(TVS)537 10.5 電源變壓器的屏蔽與隔離552 10.6 交流電源的供電抗干擾方案553 10.6.1 交流電源配電方式553 10.6.2 交流電源抗干擾綜合方案555 10.7 供電直流側(cè)抑制干擾措施555 10.7.1 整流電路的高頻濾波555 10.7.2 串聯(lián)型直流穩(wěn)壓電源配置與抗干擾556 10.7.3 集成穩(wěn)壓器使用中的保護(hù)557 10.8 開關(guān)電源干擾的抑制措施559 10.8.1 開關(guān)噪聲的分類559 10.8.2 開關(guān)電源噪聲的抑制措施560 10.9 微機(jī)用不間斷電源UPS561 10.10 采用晶閘管無觸點(diǎn)開關(guān)消除瞬態(tài)干擾設(shè)計(jì)方案564 第11章 印制電路板的抗干擾設(shè)計(jì) 11.1 印制電路板用覆銅板566 11.1.1 覆銅板材料566 11.1.2 覆銅板分類568 11.1.3 覆銅板的標(biāo)準(zhǔn)與電性能571 11.1.4 覆銅板的主要特點(diǎn)和應(yīng)用583 11.2 印制板布線設(shè)計(jì)基礎(chǔ)585 11.2.1 印制板導(dǎo)線的阻抗計(jì)算585 11.2.2 PCB布線結(jié)構(gòu)和特性阻抗計(jì)算587 11.2.3 信號(hào)在印制板上的傳播速度589 11.3 地線和電源線的布線設(shè)計(jì)590 11.3.1 降低接地阻抗的設(shè)計(jì)590 11.3.2 減小電源線阻抗的方法591 11.4 信號(hào)線的布線原則592 11.4.1 信號(hào)傳輸線的尺寸控制592 11.4.2 線間串?dāng)_控制592 11.4.3 輻射干擾的抑制593 11.4.4 反射干擾的抑制594 11.4.5 微機(jī)自動(dòng)布線注意問題594 11.5 配置去耦電容的方法594 11.5.1 電源去耦595 11.5.2 集成芯片去耦595 11.6 芯片的選用與器件布局596 11.6.1 芯片選用指南596 11.6.2 器件的布局597 11.6.3 時(shí)鐘電路的布置598 11.7 多層印制電路板599 11.7.1 多層印制板的結(jié)構(gòu)與特點(diǎn)599 11.7.2 多層印制板的布局方案600 11.7.3 20H原則605 11.8 印制電路板的安裝和板間配線606 第12章 軟件抗干擾原理與方法 12.1 概述607 12.1.1 測(cè)控系統(tǒng)軟件的基本要求607 12.1.2 軟件抗干擾一般方法607 12.2 指令冗余技術(shù)608 12.2.1 NOP的使用609 12.2.2 重要指令冗余609 12.3 軟件陷阱技術(shù)609 12.3.1 軟件陷阱609 12.3.2 軟件陷阱的安排610 12.4 故障自動(dòng)恢復(fù)處理程序613 12.4.1 上電標(biāo)志設(shè)定614 12.4.2 RAM中數(shù)據(jù)冗余保護(hù)與糾錯(cuò)616 12.4.3 軟件復(fù)位與中斷激活標(biāo)志617 12.4.4 程序失控后恢復(fù)運(yùn)行的方法618 12.5 數(shù)字濾波619 12.5.1 程序判斷濾波法620 12.5.2 中位值濾波法620 12.5.3 算術(shù)平均濾波法621 12.5.4 遞推平均濾波法623 12.5.5 防脈沖干擾平均值濾波法624 12.5.6 一階滯后濾波法626 12.6 干擾避開法627 12.7 開關(guān)量輸入/輸出軟件抗干擾設(shè)計(jì)629 12.7.1 開關(guān)量輸入軟件抗干擾措施629 12.7.2 開關(guān)量輸出軟件抗干擾措施629 12.8 編寫軟件的其他注意事項(xiàng)630 附錄 電磁兼容器件選購信息632

    標(biāo)簽: 單片機(jī) 應(yīng)用系統(tǒng) 抗干擾技術(shù)

    上傳時(shí)間: 2013-10-20

    上傳用戶:xdqm

  • ADI公司多功能電表資料

    ADI公司多功能電表資料

    標(biāo)簽: ADI 多功能 電表

    上傳時(shí)間: 2013-12-08

    上傳用戶:peterli123456

  • DSP指令集仿真器的設(shè)計(jì)與實(shí)現(xiàn)

    介紹幾種常用的仿真器的設(shè)計(jì)方案,通過比較分析各自原理的優(yōu)缺點(diǎn),結(jié)合硬件性能,設(shè)計(jì)了基于ZWFcore的指令集仿真器ZWISS。通過對(duì)其CPU、多級(jí)存儲(chǔ)單元、陷阱、內(nèi)存管理單元(MMU)、存儲(chǔ)保護(hù)系統(tǒng)(MPS)以及物理內(nèi)存屬性(PMA)的仿真,較完善地完成對(duì)ZWFcore的仿真。為DSP硬件評(píng)估、DSP算法實(shí)現(xiàn)提供了良好的軟件模擬平臺(tái)。

    標(biāo)簽: DSP 指令集 仿真器

    上傳時(shí)間: 2013-10-09

    上傳用戶:exxxds

  • 基于DSP與FPGA的多視頻通道的切換控制

    為了擴(kuò)大監(jiān)控范圍,提高資源利用率,降低系統(tǒng)成本,提出了一種多通道視頻切換的解決方案。首先從視頻信號(hào)分離出行場(chǎng)信號(hào),然后根據(jù)行場(chǎng)信號(hào)由DSP和FPGA產(chǎn)生控制信號(hào),控制多路視頻通道之間的切換,從而實(shí)現(xiàn)讓一個(gè)視頻處理器同時(shí)監(jiān)控不同場(chǎng)景。實(shí)驗(yàn)結(jié)果表明,該方案可以在視頻監(jiān)控告警系統(tǒng)中穩(wěn)定、可靠地實(shí)現(xiàn)視頻通道的切換。 Abstract:  To expand the scope of monitoring, improve resource utilization, reduce system cost, a multiple video channels signal switching method is pointed out in this paper. First, horizontal sync signal and field sync signal from the video signal are separated, then control signal according to the sync signal by DSP and FPGA is generated to control the switching between multiple video channels. Thus, it achieves to make a video processor to monitor different place. Experimental results show that the method can realize video channel switching reliably, and is applied in the video monitoring warning system successfully.

    標(biāo)簽: FPGA DSP 視頻通道 切換控制

    上傳時(shí)間: 2013-11-09

    上傳用戶:不懂夜的黑

主站蜘蛛池模板: 光泽县| 增城市| 农安县| 五寨县| 大安市| 乐业县| 隆回县| 麻江县| 行唐县| 遂平县| 韶山市| 白水县| 丹巴县| 浑源县| 尉犁县| 周至县| 龙门县| 阳新县| 西宁市| 灵川县| 青冈县| 桑日县| 集安市| 北碚区| 北京市| 兴宁市| 巫山县| 麻栗坡县| 鄂尔多斯市| 石家庄市| 临海市| 肇庆市| 新乡县| 汉寿县| 新宁县| 安泽县| 象州县| 佳木斯市| 民和| 永春县| 光泽县|