亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

多相濾波

  • FPGA內全數字延時鎖相環(huán)的設計.rar

    現場可編程門陣列(FPGA)的發(fā)展已經有二十多年,從最初的1200門發(fā)展到了目前數百萬門至上千萬門的單片FPGA芯片。現在,FPGA已廣泛地應用于通信、消費類電子和車用電子類等領域,但國內市場基本上是國外品牌的天下。 在高密度FPGA中,芯片上時鐘分布質量變的越來越重要,時鐘延遲和時鐘偏差已成為影響系統(tǒng)性能的重要因素。目前,為了消除FPGA芯片內的時鐘延遲,減小時鐘偏差,主要有利用延時鎖相環(huán)(DLL)和鎖相環(huán)(PLL)兩種方法,而其各自又分為數字設計和模擬設計。雖然用模擬的方法實現的DLL所占用的芯片面積更小,輸出時鐘的精度更高,但從功耗、鎖定時間、設計難易程度以及可復用性等多方面考慮,我們更愿意采用數字的方法來實現。 本論文是以Xilinx公司Virtex-E系列FPGA為研究基礎,對全數字延時鎖相環(huán)(DLL)電路進行分析研究和設計,在此基礎上設計出具有自主知識產權的模塊電路。 本文作者在一年多的時間里,從對電路整體功能分析、邏輯電路設計、晶體管級電路設計和仿真以及最后對設計好的電路仿真分析、電路的優(yōu)化等做了大量的工作,通過比較DLL與PLL、數字DLL與模擬DLL,深入的分析了全數字DLL模塊電路組成結構和工作原理,設計出了符合指標要求的全數字DLL模塊電路,為開發(fā)自我知識產權的FPGA奠定了堅實的基礎。 本文先簡要介紹FPGA及其時鐘管理技術的發(fā)展,然后深入分析對比了DLL和PLL兩種時鐘管理方法的優(yōu)劣。接著詳細論述了DLL模塊及各部分電路的工作原理和電路的設計考慮,給出了全數字DLL整體架構設計。最后對DLL整體電路進行整體仿真分析,驗證電路功能,得出應用參數。在設計中,用Verilog-XL對部分電路進行數字仿真,Spectre對進行部分電路的模擬仿真,而電路的整體仿真工具是HSIM。 本設計采用TSMC0.18μmCMOS工藝庫建模,設計出的DLL工作頻率范圍從25MHz到400MHz,工作電壓為1.8V,工作溫度為-55℃~125℃,最大抖動時間為28ps,在輸入100MHz時鐘時的功耗為200MW,達到了國外同類產品的相應指標。最后完成了輸出電路設計,可以實現時鐘占空比調節(jié),2倍頻,以及1.5、2、2.5、3、4、5、8、16時鐘分頻等時鐘頻率合成功能。

    標簽: FPGA 全數字 延時

    上傳時間: 2013-06-10

    上傳用戶:yd19890720

  • 基于DSP和FPGA的數字化開關電源的實用化研究.rar

    文章開篇提出了開發(fā)背景。認為現在所廣泛應用的開關電源都是基于傳統(tǒng)的分立元件組成的。它的特點是頻率范圍窄、電力小、功能少、器件多、成本較高、精度低,對不同的客戶要求來“量身定做”不同的產品,同時幾乎沒有通用性和可移植性。在電子技術飛速發(fā)展的今天,這種傳統(tǒng)的模擬開關電源已經很難跟上時代的發(fā)展步伐。 隨著DSP、ASIC等電子器件的小型化、高速化,開關電源的控制部分正在向數字化方向發(fā)展。由于數字化,使開關電源的控制部分的智能化、零件的共通化、電源的動作狀態(tài)的遠距離監(jiān)測成為了可能,同時由于它的智能化、零件的共通化使得它能夠靈活地應對不同客戶的需求,這就降低了開發(fā)周期和成本。依靠現代數字化控制和數字信號處理新技術,數字化開關電源有著廣闊的發(fā)展空間。 在數字化領域的今天,最后一個沒有數字化的堡壘就是電源領域。近年來,數字電源的研究勢頭與日俱增,成果也越來越多。雖然目前中國制造的開關電源占了世界市場的80%以上,但都是傳統(tǒng)的比較低端的模擬電源。高端市場上幾乎沒有我們份額。 本論文研究的主要內容是在傳統(tǒng)開關電源模擬調節(jié)器的基礎上,提出了一種新的數字化調節(jié)器方案,即基于DSP和FPGA的數字化PID調節(jié)器。論文對系統(tǒng)方案和電路進行了較為具體的設計,并通過測試取得了預期結果。測試證明該方案能夠適合本行業(yè)時代發(fā)展的步伐,使系統(tǒng)電路更簡單,精度更高,通用性更強。同時該方案也可用于相關領域。 本文首先分析了國內外開關電源發(fā)展的現狀,以及研究數字化開關電源的意義。然后提出了數字化開關電源的總體設計框圖和實現方案,并與傳統(tǒng)的開關電源做了較為詳細的比較。本論文的設計方案是采用DSP技術和FPGA技術來做數字化PID調節(jié),通過數字化PID算法產生PWM波來控制斬波器,控制主回路。從而取代傳統(tǒng)的模擬PID調節(jié)器,使電路更簡單,精度更高,通用性更強。傳統(tǒng)的模擬開關電源是將電流電壓反饋信號做PID調節(jié)后--分立元器件構成,采用專用脈寬調制芯片實現PWM控制。電流反饋信號來自主回路的電流取樣,電壓反饋信號來自主回路的電壓采樣。再將這兩個信號分別送至電流調節(jié)器和電壓調節(jié)器的反相輸入端,用來實現閉環(huán)控制。同時用來保證系統(tǒng)的穩(wěn)定性及實現系統(tǒng)的過流過壓保護、電流和電壓值的顯示。電壓、電流的給定信號則由單片機或電位器提供。再次,文章對各個模塊從理論和實際的上都做了仔細的分析和設計,并給出了具體的電路圖,同時寫出了軟件流程圖以及設計中應該注意的地方。整個系統(tǒng)由DSP板和ADC板組成。DSP板完成PWM生成、PID運算、環(huán)境開關量檢測、環(huán)境開關量生成以及本地控制。ADC板主要完成前饋電壓信號采集、負載電壓信號采集、負載電流信號采集、以及對信號的一階數字低通濾波。由于整個系統(tǒng)是閉環(huán)控制系統(tǒng),要求采樣速率相當高。本系統(tǒng)采用FPGA來控制ADC,這樣就避免了高速采樣占用系統(tǒng)資源的問題,減輕了DSP的負擔。DSP可以將讀到的ADC信號做PID調節(jié),從而產生PWM波來控制逆變橋的開關速率,從而達到閉環(huán)控制的目的。 最后,對數字化開關電源和模擬開關電源做了對比測試,得出了預期結論。同時也提出了一些需要改進的地方,認為該方案在其他相關行業(yè)中可以廣泛地應用。模擬控制電路因為使用許多零件而需要很大空間,這些零件的參數值還會隨著使用時間、溫度和其它環(huán)境條件的改變而變動并對系統(tǒng)穩(wěn)定性和響應能力造成負面影響。數字電源則剛好相反,同時數字控制還能讓硬件頻繁重復使用、加快上市時間以及減少開發(fā)成本與風險。在當前對產品要求體積小、智能化、共通化、精度高和穩(wěn)定度好等前提條件下,數字化開關電源有著廣闊的發(fā)展空間。本系統(tǒng)來基本上達到了設計要求。能夠滿足較高精度的設計要求。但對于高精度數字化電源,系統(tǒng)還有值得改進的地方,比如改進主控器,提高參考電壓的精度,提高采樣器件的精度等,都可以提高系統(tǒng)的精度。 本系統(tǒng)涉及電子、通信和測控等技術領域,將數字PID算法與電力電子技術、通信技術等有機地結合了起來。本系統(tǒng)的設計方案不僅可以用在電源控制器上,只要是相關的領域都可以采用。

    標簽: FPGA DSP 數字化

    上傳時間: 2013-06-29

    上傳用戶:dreamboy36

  • JPEG2000中小波變換的FPGA實現.rar

    JPEG 2000是為適應不斷發(fā)展的圖像壓縮應用而出現的新的靜止圖像壓縮標準,小波變換是JEPG 2000核心算法之一。小波變換是一種可達到時(空)域或頻率域局部化的時頻域或空頻域分析方法,其多尺度分解特性符合人類的視覺機制,更加適用于圖像信息的處理。提升小波變換是一類不采用傅立葉變換做為主要分析工具的小波變換新方法,提升小波變換的提出大大簡化了小波變換的計算,使其在實時信號處理領域得到廣泛的應用。通過提升的方法很容易構造一般的整數小波變換,由于圖像一般用位數較低的整數表示,整數小波變換可以將為整數序列的圖像矩陣映射成整數小波系數矩陣,這就大大簡化了小波變換的硬件電路設計。在當今數字化和信息化時代背景下,研究具有高速硬件處理功能的可變程邏輯器件在圖像壓縮算法領域的應用已經成為當今研究的熱點。 本文旨在探討和研制基于FPGA的小波變換模塊的可能性和方法。本文采用Xilinx公司的Spartan-Ⅲ系列芯片,根據JPEG 2000推薦無損提升小波算法和有損提升小波算法,設計圖像壓縮系統(tǒng)的小波變換模塊。主要工作如下: 第一部分介紹了傳統(tǒng)小波分析理論和提升小波分析理論。包括連續(xù)小波時頻局域性的特征,離散小波變換系數的意義,多分辨分析引出的構造小波基的系統(tǒng)方法和計算離散小波的快速算法等。重點放在介紹正交小波和雙正交小波的構造方法,并介紹了數字圖像在小波域的特點。討論了提升小波變換的基本思想,討論了用提升方法構造小波基以及傳統(tǒng)小波變換的提升實現,討論了整數小波變換。 第二部分介紹了FPGA結構及其設計流程。介紹了FPGA/CPLD器件的特征、發(fā)展趨勢及FPGA/CPLD基本結構,然后重點介紹了本文用到的Xilinx公司Spartan-Ⅲ系列芯片的結構特點,以及Xilinx的FPGA開發(fā)軟件ISE,最后介紹了硬件描述語言VHDL語言的特點。 最后一部分是本論文研究的主要內容,即JPEG 2000中最核心的算法-提升格式小波變換的一維變換模塊設計和二維變換模塊設計。一維提升小波變換模塊采用兩種不同的電路結構進行設計-低速低功耗的串行流水線結構和高速高功耗的并行陣列結構。同樣,二維小波變換模塊也采用了兩種不同的電路結構進行設計-低速低功耗的折疊結構和高速高功耗的串行結構。 文章對提升小波變換的FPGA實現中的大量細節(jié)問題進行了討論,給出了每種結構提升小波變換模塊的電路原理圖,并對原理圖進行了仿真測試,仿真測試結果不僅表明了模塊功能的正確性,而且表明不同小波模塊可以滿足相應領域的實際要求。

    標簽: JPEG 2000 FPGA

    上傳時間: 2013-06-08

    上傳用戶:dwzjt

  • 基于DSP與FPGA的兩相混合式步進電機細分驅動的實現.rar

    在步進電機驅動方式中,效果最好的是細分驅動,當今高端的步進電機驅動器基本都采用這種技術。步進電機的細分驅動技術是一門綜合了數字化技術、集成控制技術和計算機技術的新技術,被廣泛應用于工業(yè)、科研、通訊、天文等領域。 本文設計了一種基于DSP以及FPGA的兩相混合式步進電機SPWM(正弦脈寬調制)波細分驅動系統(tǒng)。在DSP系統(tǒng)中采用TMS320I.F2407A微控制器作為核心控制器件,用軟件產生SPWM波;在FPGA系統(tǒng)中采用FPGA芯片,通過VerilogHDL語言,實現了SPWM波;在功率驅動級電路上采用雙極性H橋的驅動方式。最終實現了對兩相混合式步進電機SPWM波細分驅動,大大提高了步進電機的運轉性能。 本文介紹了兩相混合式步進電機的工作原理、控制原理以及細分驅動的基本原理。通過對恒轉矩細分驅動的分析,提出了兩相混合式步進電機SPWM波細分驅動的方案,并給出了SPWM波產生的數學模型。最后,對步進電機的SPWM波細分驅動系統(tǒng)進行了實驗測量,給出了實驗結果。 實驗的結果表明,設計的基于DSP與FPGA的SPWM波細分驅動系統(tǒng)可以很好地克服電機低頻振蕩的問題,提高電機在中、低速運行的性能。電機的掃描范圍與理論值基本接近;微步距在誤差允許的范圍內也基本可以滿足要求。

    標簽: FPGA DSP 步進電機

    上傳時間: 2013-04-24

    上傳用戶:WANGLIANPO

  • 基于模糊增強和小波包變換的人臉識別方法

    針對目前光照補償后人臉圖像的識別率仍不夠理想這一問題,提出了一種基于模糊增強和小波包變換相結合的非均勻光照下人臉識別方法。將人臉圖像在對數域中計算二維小波包變換,通過舍棄部分子帶圖像中的系數來實現人臉

    標簽: 模糊 變換 人臉識別方法

    上傳時間: 2013-04-24

    上傳用戶:gxf2016

  • 基于DSP/FPGA的多波形數字脈沖壓縮系統(tǒng)硬件的研究與實現

    現代雷達系統(tǒng)廣泛采用脈沖壓縮技術,用以解決作用距離與分辨能力之間的矛盾。脈沖壓縮是指雷達通過發(fā)射寬脈沖,保證足夠的最大作用距離,而接收時,采用相應的脈沖壓縮法獲得窄脈沖以提高距離分辨率的過程。同時,數字信號處理技術的迅猛發(fā)展和廣泛應用,為雷達脈沖壓縮處理的數字化實現提供了可能。 本文主要研究雷達多波形頻域數字脈沖壓縮系統(tǒng)的硬件系統(tǒng)實現。在匹配濾波理論的指導下,成功研制了基于FPGAEP1K100QC208-1和4片高性能ADSP21160M的多波形頻域數字脈沖壓縮系統(tǒng)。該系統(tǒng)可處理時寬在42μs以內、帶寬在5MHz以下的線性調頻信號(LFM),非線性調頻信號(NLFM)和Taylor四相碼信號,且技術指標完全滿足實用系統(tǒng)的設計要求。 本文完成的主要工作和創(chuàng)新之處有:(1)基于雙通道模數轉換器AD10242設計高精度數據采集電路,為整個脈壓系統(tǒng)的工作提供必要的條件。完成了前端模擬信號輸入電路的優(yōu)化和差分輸入時鐘的產生,以實現高精度采樣。 (2)根據協議和脈壓系統(tǒng)的工作要求,以基于FPGAEP1K100QC208完成系統(tǒng)控制,使整個脈壓系統(tǒng)正確穩(wěn)定地工作。同時以該FPGA生成雙口RAM,實現數據暫存,以匹配采樣速率和脈壓系統(tǒng)頻率。 (3)設計基于4片高性能ADSP21160M的緊耦合并行處理系統(tǒng),以完成多波形頻域數字脈沖壓縮的全部運算工作。4片DSP共享外部總線,且各DSP以鏈路口互連,進行數據通信。各DSP還使用一個鏈路口連接到接口板DSP,將脈壓結果送出。 (4)以一片ADSP21160M和一片EP1K100QC208為核心,設計輸出板電路,完成數據對齊、求模和數據向下一級的輸出,并產生模擬輸出。 (5)調試并改進處理板和輸出板。

    標簽: FPGA DSP 多波形 壓縮系統(tǒng)

    上傳時間: 2013-06-11

    上傳用戶:qq277541717

  • JPEG2000二維離散小波變換快速算法研究和FPGA實現

    相對于JPEG中二維離散余弦變換(2DDCT)來說,在JPEG2000標準中,二維離散小波變換(2DDWT)是其圖像壓縮系統(tǒng)的核心變換。在很多需要進行實時處理圖像的系統(tǒng)中,如數碼相機、遙感遙測、衛(wèi)星通信、多媒體通信、便攜式攝像機、移動通信等系統(tǒng),需要用芯片實現圖像的編解碼壓縮過程。雖然有許多研究工作者對圖像處理的小波變換進行了研究,但大都只偏重算法研究,對算法硬件實現時的復雜性考慮較少,對圖像處理的小波變換硬件實現的研究也較少。  本文針對圖像處理的小波變換算法及其硬件實現進行了研究。對文獻[13]提出的“內嵌延拓提升小波變換”(Combiningthedata-extensionprocedureintothelifting-basedDWTcore)快速算法進行仔細分析,提出一種基于提升方式的5/3小波變換適合硬件實現的算法,在MATLAB中仿真驗證了該算法,證明其是正確的。并設計了該算法的硬件結構,在MATLAT的Simulink中進行仿真,對該結構進行VHDL語言的寄存器傳輸級(RTL)描述與仿真,成功綜合到Altera公司的FPGA器件中進行驗證通過。本算法與傳統(tǒng)的小波變換的邊界處理方法比較:由于將其邊界延拓過程內嵌于小波變換模塊中,使該硬件結構無需額外的邊界延拓過程,減少小波變換過程中對內存的讀寫量,從而達到減少內存使用量,降低功耗,提高硬件利用率和運算速度的特點。本算法與文獻[13]提出的算法相比較:無需增加額外的硬件計算模塊,又具有在硬件實現時不改變原來的提升小波算法的規(guī)則性結構的特點。這種小波變換硬件芯片的實現不僅適用于JPEG2000的5/3無損小波變換,當然也可用于其它各種實時圖像壓縮處理硬件系統(tǒng)。

    標簽: JPEG 2000 FPGA 二維

    上傳時間: 2013-06-13

    上傳用戶:jhksyghr

  • 基于FPGA的逆變器控制芯片研究

    逆變控制器的發(fā)展經歷從分立元件的模擬電路到以專用微處理芯片(DSP/MCU)為核心的電路系統(tǒng),并從數模混合電路過渡到純數字控制的歷程。但是,通用微處理芯片是為一般目的而設計,存在一定局限。為此,近幾年來逆變器專用控制芯片(ASIC)實現技術的研究越來越受到關注,已成為逆變控制器發(fā)展的新方向之一。本文利用一個成熟的單相電壓型PWM逆變器控制模型,圍繞逆變器專用控制芯片ASIC的實現技術,依次對專用芯片的系統(tǒng)功能劃分,硬件算法,全系統(tǒng)的硬件設計及優(yōu)化,流水線操作和并行化,芯片運行穩(wěn)定性等問題進行了初步研究。首先引述了單相電壓型PWM逆變器連續(xù)時間和離散時間的數學模型,以及基于極點配置的單相電壓型PWM逆變器電流內環(huán)電壓外環(huán)雙閉環(huán)控制系統(tǒng)的設計過程,同時給出了仿真結果,仿真表明此系統(tǒng)具有很好的動、靜態(tài)性能,并且具有自動限流功能,提高了系統(tǒng)的可靠性。緊接著分析了FPGA器件的特征和結構。在給出本芯片應用目標的基礎上,制定了FPGA目標器件的選擇原則和芯片的技術規(guī)格,完成了器件選型及相關的開發(fā)環(huán)境和工具的選取。然后系統(tǒng)闡述了復雜FPGA設計的設計方法學,詳細介紹了基于FPGA的ASIC設計流程,概要介紹了僅使用QuartusII的開發(fā)流程,以及Modelsim、SynplifyPro、QuartusII結合使用的開發(fā)流程。在此基礎上,進行了芯片系統(tǒng)功能劃分,針對:DDS標準正弦波發(fā)生器,電壓電流雙環(huán)控制算法單元,硬件PI算法單元,SPWM產生器,三角波發(fā)生器,死區(qū)控制器,數據流/控制流模塊等逆變器控制硬件算法/控制單元,研究了它們的硬件算法,完成了模塊化設計。分析了全數字鎖相環(huán)的結構和模型,以此為基礎,設計了一種應用于逆變器的,用比例積分方法替代傳統(tǒng)鎖相系統(tǒng)中的環(huán)路濾波,用相位累加器實現數控振蕩器(DCO)功能的高精度二階全數字鎖相環(huán)(DPLL)。分析了“流水線操作”等設計優(yōu)化問題,并針對逆變器控制系統(tǒng)中,控制系統(tǒng)算法呈多層結構,且層與層之間還有數據流聯系,其執(zhí)行順序和數據流的走向較為復雜,不利于直接采用流水線技術進行設計的特點,提出一種全新的“分層多級流水線”設計技術,有效地解決了復雜控制系統(tǒng)的流水線優(yōu)化設計問題。本文最后對芯片運行穩(wěn)定性等問題進行了初步研究。指出了設計中的“競爭冒險”和飽受困擾之苦的“亞穩(wěn)態(tài)”問題,分析了產生機理,并給出了常用的解決措施。

    標簽: FPGA 逆變器 控制芯片

    上傳時間: 2013-05-28

    上傳用戶:ice_qi

  • 基于提升機構的二維離散小波的FPGA設計

    在衛(wèi)星遙感設備中,隨著遙感技術的發(fā)展和對傳輸式觀測衛(wèi)星遙感圖像質量要求的不斷提高,航天遙感圖像的分辨率和采樣率也越來越高,由此引起高分辨率遙感圖像數據存儲量和傳輸數據量的急劇增長,然而衛(wèi)星信道帶寬有限。為了盡量保持高分辨率遙感圖像所具有的信息,必須解決輸入數據碼率和傳輸信道帶寬之間的矛盾。所以星載高分辨率遙感圖像數據的高保真、實時、大壓縮比壓縮技術就成了解決這一矛盾的關鍵技術。FPGA器件為實現數據壓縮提供了一種壓縮算法的硬件實現的一個理想的平臺。FPGA器件集成度高,體積小,通過用戶編程實現專門應用的功能。它允許電路設計者利用基于計算機的開發(fā)平臺,經過設計輸入,仿真,測試和校驗,直到達到預期的結果,減少了開發(fā)周期。小波變換能夠適應現代圖像壓縮所需要的如多分辨率、多層質量控制等要求,在較大壓縮比下,小波圖像壓縮質量明顯好于DCT變換,因此小波變換成為新一代壓縮標準JPEG2000的核心算法。同時,小波變換的提升算法結構簡單,能夠實現快速算法,有利于硬件實現,因此提升小波變換對于采用FPGA或ASIC來實現圖像變換來說是很好的選擇。本文針對衛(wèi)星遙感圖像的數據流,主要研究可以對衛(wèi)星圖像進行實時二維小波變換的方案。針對提升小波變換的VLSI結構和FPGA設計中的關鍵技術,從邊界延拓、濾波器結構、整數小波、定點運算、原位運算等方面進行了研究和討論,并且完成了針對衛(wèi)星遙感圖像的分塊二維9/7提升小波變換的FPGA實現。采用VerIlog語言對設計進行了仿真驗證,并將仿真結果同matlab仿真結果進行了比較,比較結果表明該方案能實現對衛(wèi)星遙感圖像數據流的二維提升小波變換的功能。同時QuartusII綜合結果也表明,系統(tǒng)時鐘能夠工作在很高的頻率,可以滿足高速實時對衛(wèi)星圖像的小波變換處理。

    標簽: FPGA 提升機 二維 離散小波

    上傳時間: 2013-06-15

    上傳用戶:00.00

  • 基于ARM的超聲波電機速度位置控制系統(tǒng)研究

    超聲波電機(Ultrasonic motors,簡稱USM)是一種全新原理的直接驅動電機,它利用壓電陶瓷逆壓電效應激發(fā)的超聲振動作為驅動力,通過定轉子間的摩擦力來驅動轉子運動。與傳統(tǒng)的電磁電機相比,它具有低速大轉矩、無電磁干擾、動作響應快、運行無噪聲、無輸入自鎖等卓越特性,在非連續(xù)運動領域、精密控制領域比傳統(tǒng)的電磁電機性能優(yōu)越得多。超聲波電機在工業(yè)控制系統(tǒng)、汽車專用電器、精密儀器儀表、辦公自動化設備、智能機器人等領域有廣闊的應用前景,近年來倍受科技界和工業(yè)界的重視,成為當前機電控制領域的一個研究熱點。 本文主要以行波型超聲波電機的驅動控制技術為研究對象,引入嵌入式系統(tǒng)理念,設計并制作了超聲波電機的驅動控制系統(tǒng),并對超聲波電機的速度與定位控制做了深入的研究。本文主要研究內容及成果如下: 介紹了超聲波電機的工作原理、特點及其應用前景,總結了國內外超聲波電機驅動控制技術的發(fā)展歷史和研究現狀,以及今后我國超聲波電機驅動控制技術的發(fā)展方向,明確了本文的研究內容。 結合嵌入式系統(tǒng)特點及其開發(fā)方法,詳細介紹了超聲波電機嵌入式驅動控制系統(tǒng)的硬件和軟件設計過程,并總結了硬件、軟件的調試過程。最后,對所設計系統(tǒng)性能進行了實驗測試和數據分析。 采用DDS技術解決超聲波電機所需要的高頻驅動電源和數字控制的問題。本文設計的以ARM控制器為核心,頻率、相位、幅值均可調的雙通道信號發(fā)生器,具有頻率和相位差控制精度高的特點。 本文介紹了速度與位置的常用控制策略。設計并搭建了基于增量式PID的速度和基于模糊PID的位置控制系統(tǒng)。速度控制采用增量式PID調節(jié),其控制策略簡單、易行,通過實驗選擇合適的參數能適應一般的控制精度要求。定位控制則采用模糊PID控制策略,該策略將模糊控制不需要精確的數學模型、收斂速度快的特點與PID簡單易行、能消除穩(wěn)態(tài)誤差的優(yōu)點相結合,改善了模糊控制器穩(wěn)態(tài)性能,使電機定位控制精度達到0.0880。

    標簽: ARM 超聲波 電機 位置控制

    上傳時間: 2013-07-16

    上傳用戶:wdq1111

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲女性喷水在线观看一区| 久久9热精品视频| 男人的天堂亚洲在线| 在线视频亚洲一区| 欧美激情bt| 久久久久久久91| 精品成人国产| 国产精品色在线| 欧美日韩大片一区二区三区| 亚洲欧美一区二区精品久久久 | 欧美午夜免费影院| 欧美va亚洲va国产综合| 亚洲国产导航| 在线一区亚洲| 香蕉av777xxx色综合一区| 亚洲欧美另类在线观看| 欧美大片专区| 欧美日精品一区视频| 老巨人导航500精品| 亚洲一本大道在线| 榴莲视频成人在线观看| 永久91嫩草亚洲精品人人| 欧美视频网址| 亚洲激情社区| 国产精品成人一区二区三区夜夜夜 | 欧美成人第一页| 亚洲精品国产精品国产自| 久久成人免费电影| 亚洲片在线观看| 一本色道久久综合亚洲精品婷婷| 国产精品人成在线观看免费 | 香蕉亚洲视频| 亚洲狼人综合| 欧美区日韩区| 欧美一区二区日韩| 亚洲美洲欧洲综合国产一区| 国产精品欧美久久| 免费成人黄色片| 一区二区三区精品视频| 国产精品综合| 欧美一区二区三区婷婷月色| 亚洲毛片一区二区| 亚洲视频大全| 午夜视频在线观看一区二区三区| 久久爱另类一区二区小说| 国产人妖伪娘一区91| 欧美日精品一区视频| 99re66热这里只有精品3直播| 亚洲精品美女在线观看| 一区二区三区精密机械公司 | 又紧又大又爽精品一区二区| 国产精品女人久久久久久| 国产欧美精品va在线观看| 亚洲国产精品第一区二区| 国产精品网红福利| 亚洲国产1区| 亚洲综合精品| 欧美不卡视频一区发布| 国产伦精品一区| 最新日韩精品| 久久精品2019中文字幕| 欧美日韩一区二区三区在线观看免| 国产精品视频免费| 91久久黄色| 久久在线免费| 国产欧美日韩亚洲精品| 日韩视频专区| 欧美成人综合一区| 国产一区视频在线观看免费| 中国女人久久久| 欧美顶级艳妇交换群宴| 国产色产综合色产在线视频| 夜夜夜精品看看| 欧美国产亚洲精品久久久8v| 国内精品久久久久久久影视蜜臀| 99国产精品视频免费观看一公开| 久久综合伊人77777蜜臀| 国产视频一区三区| 中文日韩在线| 欧美视频精品在线观看| 日韩视频欧美视频| 欧美电影资源| 最新国产乱人伦偷精品免费网站| 久久久久久精| 国产丝袜美腿一区二区三区| 午夜精品免费在线| 国产精品视频九色porn| 午夜国产精品视频免费体验区| 欧美午夜一区二区三区免费大片| 亚洲人精品午夜在线观看| 毛片精品免费在线观看| 亚洲电影免费观看高清完整版在线观看| 亚洲二区三区四区| 久久久久久久久久久一区 | 麻豆精品视频在线| 国产日韩欧美综合在线| 亚洲欧美日韩中文视频| 欧美日韩一区二区三区高清| 亚洲欧洲精品一区二区三区不卡 | 日韩一二三区视频| 欧美另类久久久品| 欧美日本成人| 欧美日韩第一页| 欧美日韩一区二区三区高清| 国产精品高潮呻吟视频| 国产一区二区三区的电影 | 激情欧美丁香| 国产欧美日韩亚洲精品| 国产亚洲欧美色| 亚洲啪啪91| 国内自拍一区| 久久综合亚州| 你懂的亚洲视频| 国产精品对白刺激久久久| 在线观看日韩一区| 欧美啪啪一区| 国产精品sss| 国产精品自拍一区| 欧美一区二区日韩| 狠狠综合久久av一区二区小说| 蜜桃av一区二区在线观看| 亚洲日韩欧美视频一区| 国产精品极品美女粉嫩高清在线| 午夜伦理片一区| 亚洲高清不卡在线观看| 欧美日韩免费高清一区色橹橹| 亚洲一区在线免费| 伊人精品成人久久综合软件| 欧美伦理影院| 久久精品成人欧美大片古装| 亚洲精选国产| 国产精品一区二区三区久久| 久热精品在线视频| 亚洲精品在线观看视频| 国产欧美精品久久| 免费成人av在线| 欧美亚洲视频一区二区| 亚洲理论电影网| 国产亚洲人成网站在线观看| 亚洲视频一二| 久久久久久久激情视频| 亚洲第一在线| 欧美国产一区二区在线观看| 中文国产一区| 国产一区二区主播在线| 免费看亚洲片| 一区二区三区.www| 国产精品一区二区男女羞羞无遮挡| 欧美一二区视频| 一区二区动漫| 国产一区二区欧美| 欧美精品 国产精品| 亚洲伊人第一页| 国内自拍亚洲| 欧美日韩中文字幕| 久久精品一区二区三区不卡| 91久久精品日日躁夜夜躁欧美| 欧美激情按摩在线| 久久精品首页| 亚洲少妇诱惑| 亚洲国产二区| 国产麻豆视频精品| 国产精品xnxxcom| 免费观看久久久4p| 午夜欧美精品久久久久久久| 亚洲激情偷拍| 国产女优一区| 欧美日韩在线视频一区| 久久国产加勒比精品无码| 99国产精品99久久久久久粉嫩| 久久人人超碰| 久久久在线视频| 这里只有精品在线播放| 一区在线免费观看| 国产女主播一区二区三区| 国产精品一区二区久久久久| 欧美成人激情视频| 欧美专区日韩专区| 性高湖久久久久久久久| 99re热这里只有精品免费视频| 亚洲精品麻豆| 一区二区在线不卡| 在线观看欧美黄色| 伊人天天综合| 黑人巨大精品欧美一区二区 | 国产视频亚洲精品| 欧美精品免费看| 久久免费视频网站| 久久一二三四| 欧美成人国产va精品日本一级| 久久偷看各类wc女厕嘘嘘偷窃| 欧美中文字幕在线播放| 欧美紧缚bdsm在线视频| 久久这里只有| 欧美在线一级视频| 久久综合久久综合久久| 欧美一区二区黄| 久久精品国产欧美激情| 午夜伦欧美伦电影理论片| 亚洲欧美日韩一区在线|