環(huán)境的不斷污染、石油能源的加劇消耗促使純電動(dòng)車成為了各國(guó)各汽車廠商爭(zhēng)相研究的對(duì)象。而閥控免維護(hù)鉛酸蓄電池(VRLA)憑著其低廉的價(jià)格優(yōu)勢(shì)占據(jù)了車用蓄電池的大部分市場(chǎng)份額。本文旨在開(kāi)發(fā)一套完整的VRLA蓄電池管理系統(tǒng),包括蓄電池狀態(tài)檢測(cè)、均衡充放電管理、溫度管理、充放電管理等。 本文首先討論了車用VRLA蓄電池的特性,包括其失效模式、改進(jìn)方式以及各種充電方法對(duì)其物理上的影響。隨后,針對(duì)VRLA車用蓄電池,本文著重討論了電動(dòng)汽車蓄電池的智能管理系統(tǒng),第三章到第四章詳細(xì)介紹了裝載車內(nèi)的管理系統(tǒng)(檢測(cè)系統(tǒng)、均衡系統(tǒng));第五章著重討論了置于車外的充放電管理系統(tǒng)的設(shè)計(jì)和實(shí)現(xiàn)。 狀態(tài)檢測(cè)系統(tǒng)系統(tǒng)主要包括電池狀態(tài)采集系統(tǒng)以及剩余容量SoC、健康狀態(tài)SoH測(cè)量系統(tǒng)。本文針對(duì)電動(dòng)汽車這個(gè)特殊應(yīng)用場(chǎng)合,提出了一種新的同時(shí)基于AH定律、Peukert方程、溫度修正、SoH以及開(kāi)路電壓的的容量預(yù)測(cè)方法。 均衡充電系統(tǒng)的目的是保持串聯(lián)電池組單體電池容量的均衡。均衡管理系統(tǒng)主要包括控制器、開(kāi)關(guān)組件以及輔助均衡充電器三個(gè)部分。 主充電系統(tǒng)采用的是正負(fù)脈沖的充電方式,本系統(tǒng)通過(guò)一個(gè)全橋雙向DC/DC變流器來(lái)實(shí)現(xiàn)。主充電器的功率等級(jí)為20kW,在本課題組中,這個(gè)功率等級(jí)較之以往有較大的突破。
標(biāo)簽: 20 kW 車用
上傳時(shí)間: 2013-04-24
上傳用戶:飛翔的胸毛
工業(yè)生產(chǎn)過(guò)程中,時(shí)滯對(duì)象普遍存在,同時(shí)也是較難控制的,尤其是大時(shí)滯對(duì)象的控制一直都是一個(gè)難題。而很多溫度控制系統(tǒng)都是屬于大時(shí)滯系統(tǒng),常見(jiàn)的智能溫度控制器雖然在溫度控制的實(shí)際應(yīng)用中表現(xiàn)了比較理想的控制效果,但它仍然屬于將參數(shù)整定與系統(tǒng)控制分開(kāi)處理的離線整定方法,如果工況發(fā)生變化就必須重新調(diào)整參數(shù)。針對(duì)這一問(wèn)題,為了實(shí)現(xiàn)時(shí)滯系統(tǒng)參數(shù)自整定的控制,本文將神經(jīng)網(wǎng)路控制、模糊控制和PID控制結(jié)合起來(lái),設(shè)計(jì)了基于神經(jīng)網(wǎng)路的模糊自適應(yīng)PID控制器。 首先,本論文分析了時(shí)滯系統(tǒng)的特點(diǎn),討論了幾種時(shí)滯系統(tǒng)較為成熟的常規(guī)控制算法:微分先行控制算法、史密斯預(yù)估控制算法、大林控制算法,并深入研究了它們的控制性能;并且通過(guò)仿真對(duì)這三種控制方法在溫控系統(tǒng)中的控制性能進(jìn)行了比較。 其次,在分析PID參數(shù)自整定傳統(tǒng)方法的基礎(chǔ)上,設(shè)計(jì)了一種改進(jìn)方法,并設(shè)計(jì)了相應(yīng)的控制器。該控制器綜合了模糊控制、神經(jīng)網(wǎng)絡(luò)控制和PID控制各自的長(zhǎng)處,既具備了模糊控制簡(jiǎn)單有效的控制作用以及較強(qiáng)的邏輯推理功能,也具備了神經(jīng)網(wǎng)絡(luò)的自適應(yīng)、自學(xué)習(xí)的能力,同時(shí)也具備了傳統(tǒng)PID控制的廣泛適應(yīng)性。該方法不需要離線整定參數(shù),實(shí)現(xiàn)了在線自整定參數(shù)。仿真實(shí)驗(yàn)表明了該控制器對(duì)模型和環(huán)境都具有較好的適應(yīng)能力和較強(qiáng)的魯棒性。 最后將基于神經(jīng)網(wǎng)路的模糊自適應(yīng)PID控制器應(yīng)用于貝加萊PID溫控裝置,能夠出色地實(shí)現(xiàn)參數(shù)的在線自整定。理論分析、系統(tǒng)仿真、實(shí)驗(yàn)結(jié)果都證實(shí)了這種控制策略能有效地減少系統(tǒng)超調(diào)量,并減少了調(diào)節(jié)時(shí)間,提高了系統(tǒng)的實(shí)時(shí)性和控制精度。
標(biāo)簽: 時(shí)滯系統(tǒng) 參數(shù) 自整定控制
上傳時(shí)間: 2013-07-05
上傳用戶:xinyuzhiqiwuwu
目前,能源危機(jī)與環(huán)境污染已經(jīng)備受關(guān)注,被各個(gè)國(guó)家提上紀(jì)事日程。在眾多的新能源中,風(fēng)能以它可再生、清潔、無(wú)污染等特點(diǎn)受到人們的青睞。在風(fēng)力發(fā)電技術(shù)上也從獨(dú)立型逐漸向并網(wǎng)型轉(zhuǎn)變,因此并網(wǎng)技術(shù)已成為主流。由于變速恒頻具有發(fā)電量大,對(duì)風(fēng)電場(chǎng)風(fēng)速的變化適應(yīng)性好具有較高的葉尖速比等優(yōu)點(diǎn),所以變速恒頻必然會(huì)取代恒速恒頻。實(shí)現(xiàn)變速恒頻的風(fēng)力發(fā)電機(jī)組有很多種,其中永磁同步直驅(qū)式風(fēng)力發(fā)電機(jī)由于不需要齒輪箱,因而改善風(fēng)能轉(zhuǎn)換效率,減小維護(hù),降低了噪音,提高可靠性,本文以永磁同步直驅(qū)式發(fā)電系統(tǒng)為研究對(duì)象。 本文針對(duì)永磁同步直驅(qū)式發(fā)電雙PWM變換器系統(tǒng),首先在對(duì)變速恒頻理論研究的基礎(chǔ)上,對(duì)風(fēng)力機(jī)的數(shù)學(xué)模型進(jìn)行了分析,完成了對(duì)風(fēng)力機(jī)的最大風(fēng)力跟蹤模擬仿真。由于發(fā)電機(jī)發(fā)出的電隨著風(fēng)速的不斷變化,因此就靠控制變換器來(lái)實(shí)現(xiàn)恒壓恒頻的電壓并送入電網(wǎng)。其次在對(duì)永磁同步發(fā)電機(jī)和變換器的數(shù)學(xué)模型研究的基礎(chǔ)上提出了對(duì)整流側(cè)和電網(wǎng)側(cè)變換器分開(kāi)控制,控制整流器來(lái)控制發(fā)電機(jī)的轉(zhuǎn)速,控制逆變器來(lái)實(shí)現(xiàn)穩(wěn)壓和恒頻的向電網(wǎng)輸送電壓。并對(duì)逆變器側(cè)的直流電容和電感選值給出了范圍,在這些理論基礎(chǔ)上對(duì)逆變器進(jìn)行了MATLAB/SIMULINK仿真,給出了仿真結(jié)果。在前面理論分析的基礎(chǔ)上,針對(duì)逆變器部分做了硬件和軟件的設(shè)計(jì)。選用智能功率模塊(IPM)作為逆變器,采用霍爾電壓、電流傳感器實(shí)現(xiàn)了對(duì)電壓電流的采樣,控制器選用TMS320F2407A,并制作了對(duì)采樣信號(hào)處理電路板、PWM信號(hào)處理電路板和傳感器電路板,編寫了程序。
標(biāo)簽: 風(fēng)力發(fā)電機(jī) 變速恒頻
上傳時(shí)間: 2013-06-17
上傳用戶:youlongjian0
工業(yè)領(lǐng)域中需要大量的AC/DC整流電源。隨著現(xiàn)代電力電子技術(shù)的不斷發(fā)展,人們?cè)灰嬉庾R(shí)到低功率因數(shù)整流系統(tǒng)造成了諧波污染和電網(wǎng)公害。因此消除電網(wǎng)諧波污染,提高功率因數(shù),成為整流系統(tǒng)的發(fā)展趨勢(shì)。由于中大功率的電力電子設(shè)備在電網(wǎng)中占很大的比重,因此高功率因數(shù)的三相整流器的研究已成為當(dāng)今國(guó)內(nèi)外研究的一大熱點(diǎn)。 隨著數(shù)字控制技術(shù)的不斷發(fā)展,越來(lái)越多的控制策略通過(guò)數(shù)字信號(hào)處理器(DSP)得以實(shí)現(xiàn)。數(shù)字控制的特有優(yōu)點(diǎn):簡(jiǎn)化硬件電路,克服了模擬電路中參數(shù)溫度漂移的問(wèn)題,控制靈活且易實(shí)現(xiàn)先進(jìn)控制等,使得所設(shè)計(jì)的電源產(chǎn)品不僅性能可靠,且易于大批量生產(chǎn),從而降低了開(kāi)發(fā)周期。因此,數(shù)字化控制電源已成為當(dāng)今于開(kāi)關(guān)電源產(chǎn)品設(shè)計(jì)的潮流。 本文首先給出了幾種常見(jiàn)的三相功率因數(shù)校正方案,并對(duì)其進(jìn)行了比較和分析,在前面的基礎(chǔ)上提出了:三相三開(kāi)關(guān)三電平拓?fù)浣Y(jié)構(gòu)和雙閉環(huán)控制的策略結(jié)合的三相PFC系統(tǒng)。緊接著介紹了DSP芯片的特點(diǎn)及其在電力電子裝置中的應(yīng)用,首先介紹目前DSP芯片的發(fā)展,通過(guò)比較選定了TI公司的TMSLF2407芯片作為本文的處理芯片,而后基于對(duì)TMSLF2407芯片的內(nèi)部資源和該芯片數(shù)字式PWM信號(hào)產(chǎn)生的原基于DSP的三相有源功率因數(shù)校正研究與設(shè)計(jì)理的分析,提出了三相PFC的數(shù)字化解決方案。在第四章中介紹了基于DSP數(shù)字控制的PFC的總體設(shè)計(jì)方案,電路所采用的是基于平均電流方案的雙閉環(huán)控制策略。內(nèi)環(huán)通過(guò)瞬時(shí)值控制獲得快速的動(dòng)態(tài)性能,保證輸出畸變率較低,外環(huán)使用輸出電壓的瞬時(shí)值控制,具有較高的輸出精度。本文最后應(yīng)用仿真軟件MATLAB中的SIMULINK對(duì)系統(tǒng)進(jìn)行仿真,驗(yàn)證控制策略的可行性,并有助于系統(tǒng)主電路和控制電路的設(shè)計(jì)。對(duì)于三相變換器這種復(fù)雜的非線性系統(tǒng),需要模擬、數(shù)字信號(hào)混合仿真,仿真比較難以實(shí)現(xiàn)。一是因?yàn)槟P碗y以建立二是即使建立起一個(gè)模型,由于電路復(fù)雜,仿真軟件也未必能保證其收斂性。所以經(jīng)過(guò)簡(jiǎn)化,利用MATLAB中的SIMULINK構(gòu)建了變換器的電壓模型,用于驗(yàn)證設(shè)計(jì)方法和設(shè)計(jì)參數(shù)的正確性。
標(biāo)簽: DSP 三相 有源功率因數(shù)校正
上傳時(shí)間: 2013-05-31
上傳用戶:wengtianzhu
隨著社會(huì)的發(fā)展,人們對(duì)電力需求特別是電能質(zhì)量的要求越來(lái)越高。但由于非線性負(fù)荷大量使用,卻帶來(lái)了嚴(yán)重的電力諧波污染,給電力系統(tǒng)安全、穩(wěn)定、高效運(yùn)行帶來(lái)嚴(yán)重影響,給供用電設(shè)備造成危害。如何最大限度的減少諧波造成的危害,是目前電力系統(tǒng)領(lǐng)域極為關(guān)注的問(wèn)題。諧波檢測(cè)是諧波研究中重要分支,是解決其它相關(guān)諧波問(wèn)題的基礎(chǔ)。因此,對(duì)諧波的檢測(cè)和研究,具有重要的理論意義和實(shí)用價(jià)值。 目前使用的電力系統(tǒng)諧波檢測(cè)裝置,大多基于微處理器設(shè)計(jì)。微處理器是作為整個(gè)系統(tǒng)的核心,它的性能高低直接決定了產(chǎn)品性能的好壞。而這種微處理器為主體構(gòu)成的應(yīng)用系統(tǒng),存在效率低、資源利用率低、程序指針易受干擾等缺點(diǎn)。由于微電子技術(shù)的發(fā)展,特別是專用集成電路ASIC(ApplicationSpecificIntegratedCircuit)設(shè)計(jì)技術(shù)的發(fā)展,使得設(shè)計(jì)電力系統(tǒng)諧波檢測(cè)專用的集成電路成為可能,同時(shí)為諧波檢測(cè)裝置的硬件設(shè)計(jì)提供了一個(gè)新的發(fā)展途徑。本文目標(biāo)就是設(shè)計(jì)電力系統(tǒng)諧波檢測(cè)專用集成電路,從而可以實(shí)現(xiàn)對(duì)電力系統(tǒng)諧波的高精度檢測(cè)。采用專用集成電路進(jìn)行諧波檢測(cè)裝置的硬件設(shè)計(jì),具有體積小,速度快,可靠性高等優(yōu)點(diǎn),由于應(yīng)用范圍廣,需求量大,電力系統(tǒng)諧波檢測(cè)專用集成電路具有很好的應(yīng)用前景。 本文首先介紹了國(guó)內(nèi)外現(xiàn)行諧波檢測(cè)標(biāo)準(zhǔn),調(diào)研了電力系統(tǒng)諧波檢測(cè)的發(fā)展趨勢(shì);隨后根據(jù)裝置的功能需求,特別是依據(jù)其中諧波檢測(cè)國(guó)標(biāo)參數(shù)的測(cè)量算法,為系統(tǒng)選定了基于FPGA的SOPC設(shè)計(jì)方案。 本文分析了電力系統(tǒng)諧波檢測(cè)專用集成電路的功能模型,對(duì)專用集成電路進(jìn)行了模塊劃分。定義了各模塊的功能,并研究了模塊間的連接方式,給出了諧波檢測(cè)專用集成電路的并行結(jié)構(gòu)。設(shè)計(jì)了基于FPGA的諧波檢測(cè)專用集成電路設(shè)計(jì)和驗(yàn)證的硬件平臺(tái)。配合專用集成電路的電子設(shè)計(jì)自動(dòng)化(EDA)工具構(gòu)建了智能監(jiān)控單元專用集成電路的開(kāi)發(fā)環(huán)境。 在進(jìn)行FPGA具體設(shè)計(jì)時(shí),根據(jù)待實(shí)現(xiàn)功能的不同特點(diǎn),分為用戶邏輯區(qū)域和Nios處理器模塊兩個(gè)部分。用戶邏輯區(qū)域控制A/D轉(zhuǎn)換器進(jìn)行模擬信號(hào)的采樣,并對(duì)采樣得到的數(shù)字量進(jìn)行諧波分析等運(yùn)算。然后將結(jié)果存入片內(nèi)的雙口RAM中,等待Nios處理器的訪問(wèn)。Nios處理器對(duì)數(shù)據(jù)處理模塊的結(jié)果進(jìn)一步處理,得到其各自對(duì)應(yīng)的最終值,并將結(jié)果通過(guò)串行通信接口發(fā)送給上位機(jī)。 最后,對(duì)設(shè)計(jì)實(shí)體進(jìn)行了整體的編譯、綜合與優(yōu)化工作,并通過(guò)邏輯分析儀對(duì)設(shè)計(jì)進(jìn)行了驗(yàn)證。在實(shí)驗(yàn)室條件下,對(duì)監(jiān)測(cè)指標(biāo)的運(yùn)算結(jié)果進(jìn)行了實(shí)驗(yàn)測(cè)量,實(shí)驗(yàn)結(jié)果表明該監(jiān)測(cè)裝置滿足了電力系統(tǒng)諧波檢測(cè)的總體要求。
標(biāo)簽: FPGA 電力系統(tǒng) 諧波檢測(cè)
上傳用戶:yw14205
現(xiàn)代社會(huì)對(duì)各種無(wú)線通信業(yè)務(wù)的需求迅猛增長(zhǎng),這就要求無(wú)線通信在具有較高傳輸質(zhì)量的同時(shí),還必須具有較大的傳輸容量。這種需求要求在無(wú)線通信中必須采用效率較高的線性調(diào)制方式,以提高有限頻帶帶寬的數(shù)據(jù)速率和頻譜利用率,而效率較高的調(diào)制方式通常會(huì)對(duì)發(fā)端發(fā)射機(jī)的線性要求較高,這就使功率放大器線性化技術(shù)成為下一代無(wú)線通信系統(tǒng)的關(guān)鍵技術(shù)之一。 在本文中,研究了前人所提出的各種功放線性化技術(shù),如功率回退法、正負(fù)反饋法、預(yù)失真和非線性器件法等等,針對(duì)功率放大器對(duì)信號(hào)的失真放大問(wèn)題進(jìn)行研究,對(duì)比和研究了目前廣泛流行的自適應(yīng)數(shù)字預(yù)失真算法。在一般的自適應(yīng)數(shù)字預(yù)失真算法中,主要有兩類:無(wú)記憶非線性預(yù)失真和有記憶非線性預(yù)失真。無(wú)記憶非線性預(yù)失真主要是通過(guò)比較功率放大器的反饋信號(hào)和已知輸入信號(hào)的幅度和相位的誤差來(lái)估計(jì)預(yù)失真器的各種修正參數(shù)。而有記憶非線性預(yù)失真主要是綜合考慮功率放大器非線性和記憶性對(duì)信號(hào)的污染,需要同時(shí)分析信號(hào)的當(dāng)前狀態(tài)和歷史狀態(tài)。在對(duì)比完兩種數(shù)字預(yù)失真算法之后,文章著重分析了有記憶預(yù)失真算法,選擇了其中的多項(xiàng)式預(yù)失真算法進(jìn)行了具體分析推演,并通過(guò)軟件無(wú)線電的方法將數(shù)字信號(hào)處理與FPGA結(jié)合起來(lái),在內(nèi)嵌了System Generator軟件的Matlab/Simulink上對(duì)該算法進(jìn)行仿真分析,證明了這個(gè)算法的性能和有效性。 本文另外一個(gè)最重要的創(chuàng)新點(diǎn)在于,在FPGA設(shè)計(jì)上,使用了系統(tǒng)級(jí)設(shè)計(jì)的思路,與Xilinx公司提供的軟件能夠很好的配合,在完成仿真后能夠直接將代碼轉(zhuǎn)換成FPGA的網(wǎng)表文件或者硬件描述語(yǔ)言,大大簡(jiǎn)化了開(kāi)發(fā)過(guò)程,縮短了系統(tǒng)的開(kāi)發(fā)周期。
標(biāo)簽: WCDMA FPGA 數(shù)字
上傳時(shí)間: 2013-06-20
上傳用戶:handless
隨著圖像處理技術(shù)和投影技術(shù)的不斷發(fā)展,人們對(duì)高沉浸感的虛擬現(xiàn)實(shí)場(chǎng)景提出了更高的要求,這種虛擬顯示的場(chǎng)景往往由多通道的投影儀器同時(shí)在屏幕上投影出多幅高清晰的圖像,再把這些單獨(dú)的圖像拼接在一起組成一幅大場(chǎng)景的圖像。而為了給人以逼真的效果,投影的屏幕往往被設(shè)計(jì)為柱面屏幕,甚至是球面屏幕。當(dāng)圖像投影在柱面屏幕的時(shí)候就會(huì)發(fā)生幾何形狀的變化,而避免這種幾何變形的就是圖像拼接過(guò)程中的幾何校正和邊緣融合技術(shù)。 一個(gè)大場(chǎng)景可視化系統(tǒng)由投影機(jī)、投影屏幕、圖像融合機(jī)等主要模塊組成。在虛擬現(xiàn)實(shí)應(yīng)用系統(tǒng)中,要實(shí)現(xiàn)高臨感的多屏幕無(wú)縫拼接以及曲面組合顯示,顯示系統(tǒng)還需要運(yùn)用幾何數(shù)字變形及邊緣融合等圖像處理技術(shù),實(shí)現(xiàn)諸如在平面、柱面、球面等投影顯示面上顯示圖像。而關(guān)鍵設(shè)備在于圖像融合機(jī),它實(shí)時(shí)采集圖形服務(wù)器,或者PC的圖像信號(hào),通過(guò)圖像處理模塊對(duì)圖像信息進(jìn)行幾何校正和邊緣融合,在處理完成后再送到顯示設(shè)備。 本課題提出了一種基于FPGA技術(shù)的圖像處理系統(tǒng)。該系統(tǒng)實(shí)現(xiàn)圖像數(shù)據(jù)的AiD采集、圖像數(shù)據(jù)在SRAM以及SDRAM中的存取、圖像在FPGA內(nèi)部的DSP運(yùn)算以及圖像數(shù)據(jù)的D/A輸出。系統(tǒng)設(shè)計(jì)的核心部分在于系統(tǒng)的控制以及數(shù)字信號(hào)的處理。本課題采用XilinxVirtex4系列FPGA作為主處理芯片,并利用VerilogHDL硬件描述語(yǔ)言在FPGA內(nèi)部設(shè)計(jì)了A/D模塊、D/A模塊、SRAM、SDRAM以及ARM處理器的控制器邏輯。 本課題在FPGA圖像處理系統(tǒng)中設(shè)計(jì)了一個(gè)ARM處理器模塊,用于上電時(shí)對(duì)系統(tǒng)在圖像變化處理時(shí)所需參數(shù)進(jìn)行傳遞,并能實(shí)時(shí)從上位機(jī)更新參數(shù)。該設(shè)計(jì)在提高了系統(tǒng)性能的同時(shí)也便于系統(tǒng)擴(kuò)展。 本文首先介紹了圖像處理過(guò)程中的幾何變化和圖像融合的算法,接著提出了系統(tǒng)的設(shè)計(jì)方案及模塊劃分,然后圍繞FPGA的設(shè)計(jì)介紹了SDRAM控制器的設(shè)計(jì)方法,最后介紹了ARM處理器的接口及外圍電路的設(shè)計(jì)。
標(biāo)簽: FPGA 圖像融合 可視化
上傳用戶:ynsnjs
在工業(yè)過(guò)程中,許多對(duì)象具有滯后特性,由于純滯后的存在,使得系統(tǒng)的超調(diào)量變大,調(diào)節(jié)時(shí)間變長(zhǎng)。因此滯后過(guò)程被公認(rèn)為較難控制的對(duì)象,而且純滯后占整個(gè)動(dòng)態(tài)過(guò)程的時(shí)間越長(zhǎng),難控的程度越大。所以大純滯后對(duì)象的控制一直是困擾自動(dòng)控制和計(jì)算機(jī)應(yīng)用領(lǐng)域的一大難題。而這類對(duì)象又廣泛存在于石油、化工、釀造、制藥、冶金等工業(yè)生產(chǎn)過(guò)程中。因此對(duì)該問(wèn)題的研究具有重大的實(shí)際意義。 傳統(tǒng)的PID配合Smith預(yù)估補(bǔ)償器的控制方法,對(duì)模型誤差反映比較靈敏,當(dāng)存在建模誤差或干擾時(shí),控制效果并不能取得令人滿意的效果。近年來(lái)隨著模糊控制、神經(jīng)網(wǎng)絡(luò)控制等智能控制研究的不斷深入,有些學(xué)者將它們與Smith預(yù)估控制、PID控制及預(yù)測(cè)控制等相結(jié)合,提出了針對(duì)不確定大滯后系統(tǒng)的新的控制方法。雖然有些控制方案效果不錯(cuò),但系統(tǒng)的復(fù)雜程度和調(diào)試難度也隨之增加。因此設(shè)計(jì)簡(jiǎn)單、快速、可靠的控制器,仍是一個(gè)重大課題。 本文首先介紹了大滯后過(guò)程的控制特點(diǎn),概述了常用的大滯后過(guò)程的控制方法及其優(yōu)缺點(diǎn)。接著概要地介紹了嵌入式系統(tǒng)的優(yōu)點(diǎn)、發(fā)展歷史、現(xiàn)狀及前景。并針對(duì)性地介紹了ARM控制器的概況以及它的應(yīng)用領(lǐng)域。然后本文針對(duì)大滯后對(duì)象提出了自抗擾控制器與Smith預(yù)估補(bǔ)償器相結(jié)合的設(shè)計(jì)方案。通過(guò)仿真對(duì)比了本方案、PID配合Smith預(yù)估補(bǔ)償器及單一的自抗擾控制器的控制效果,表明自抗擾控制器與Smith預(yù)估補(bǔ)償器的結(jié)合有效地改善了大滯后對(duì)象的控制效果,增強(qiáng)了系統(tǒng)的魯棒性和抗干擾能力。為驗(yàn)證該控制方案的實(shí)際控制效果,我們以PCT-II型過(guò)程控制實(shí)驗(yàn)裝置中的具有大滯后特性的盤管內(nèi)部的溫度為被控對(duì)象,以JX44BO開(kāi)發(fā)板作為主要的控制平臺(tái)設(shè)計(jì)并完成大滯后控制實(shí)驗(yàn)。所以接下來(lái)本文介紹了實(shí)現(xiàn)這個(gè)嵌入式溫度大滯后控制系統(tǒng)所涉及到的硬件平臺(tái)、系統(tǒng)框圖以及實(shí)驗(yàn)內(nèi)容。然后本文介紹了嵌入式控制平臺(tái)的控制界面以及各個(gè)主要功能的程序的實(shí)現(xiàn),以及遠(yuǎn)程客戶端程序在以太網(wǎng)通訊方面的程序?qū)崿F(xiàn)和遠(yuǎn)程客戶端程序的操作界面。最后本文給出了本次實(shí)驗(yàn)的參數(shù)設(shè)置以及最終的實(shí)驗(yàn)結(jié)果。實(shí)驗(yàn)結(jié)果表明在實(shí)際應(yīng)用中本文所提出的方案對(duì)于大滯后對(duì)象具有較好的控制效果。
標(biāo)簽: ARM 控制 系統(tǒng)研究
上傳時(shí)間: 2013-06-11
上傳用戶:baitouyu
隨著現(xiàn)代電力系統(tǒng)向大容量、高電壓方向發(fā)展,廣泛用于大型發(fā)電機(jī)組測(cè)量和保護(hù)用的大電流互感器的研制就變得很緊迫。考慮到大電流互感器具有大電流、強(qiáng)電磁干擾和多相運(yùn)行等特點(diǎn),在設(shè)計(jì)大電流互感器時(shí),必須采取有效的屏蔽措施,屏蔽來(lái)自鄰相的雜散磁通。傳統(tǒng)的屏蔽方案是采用金屬屏蔽罩,盡管有效,但設(shè)備笨重。本文中,作者對(duì)有外層屏蔽繞組的大電流互感器進(jìn)行了各種研究。 大電流互感器采用繞組屏蔽方式后,如何優(yōu)化設(shè)計(jì)屏蔽繞組,使屏蔽繞組能夠充分有效地屏蔽雜散磁通對(duì)環(huán)形鐵心的影響呢?針對(duì)上述的問(wèn)題,本文作者主要完成如下幾個(gè)方面的工作: 1、首先對(duì)國(guó)內(nèi)外大電流互感器的發(fā)展與研究現(xiàn)狀進(jìn)行了敘述,并成功設(shè)計(jì)了15000/5A大電流互感器。 2、對(duì)精典的電磁場(chǎng)理論和場(chǎng)路耦合法的數(shù)學(xué)理論進(jìn)行了深入的研究,建立了大電流互感器的三維場(chǎng)路耦合有限元分析的數(shù)學(xué)模型和仿真模型。應(yīng)用有限元軟件ANSYS建立三維有限元仿真模型和基于場(chǎng)路耦合原理的外部耦合電路。 3、理論分析了雜散磁通對(duì)電流互感器鐵心的影響;重點(diǎn)分析了繞組屏蔽雜散磁通理論;通過(guò)等值電流法,得到無(wú)論三相還是多相電流互感器條件下,中間相的電流互感器所受到的雜散磁通是最為嚴(yán)重的,為大電流互感器的有效保護(hù)提供了科學(xué)依據(jù)。 4、為了得到最優(yōu)化屏蔽繞組,對(duì)屏蔽繞組的匝數(shù)采用離散化替代連續(xù)性,再考慮屏蔽繞組在環(huán)形鐵心上的位置,共提出了多種優(yōu)化方案;根據(jù)三維場(chǎng)路耦合有限元分析模型,精確計(jì)算出屏蔽繞組中的電流、電流分布、環(huán)形鐵心中的磁感應(yīng)強(qiáng)度分布和外層繞組的局部最高溫升,通過(guò)比較多種計(jì)算結(jié)果,得到大電流互感器屏蔽繞組的最優(yōu)化方案。 5、最后建立了大電流互感器的等效磁勢(shì)法和降流回路法兩種試驗(yàn)方案模型,通過(guò)比較試驗(yàn)方案仿真計(jì)算結(jié)果和出廠試驗(yàn)結(jié)果,證明了仿真計(jì)算結(jié)果是正確的,可靠的。 通過(guò)對(duì)屏蔽繞組進(jìn)行優(yōu)化設(shè)計(jì)后,有效地削弱了雜散磁通,使得大電流互感器輕型化、小型化,節(jié)約了大量的銅材料,使得其運(yùn)輸更加方便。
標(biāo)簽: 大電流 互感器 繞組 應(yīng)用研究
上傳用戶:yolo_cc
DC/DC變換器的并聯(lián)技術(shù)是提高DC/DC變換器功率等級(jí)的有效途徑,而如何實(shí)現(xiàn)并聯(lián)模塊間輸出電流的平均分配是實(shí)現(xiàn)并聯(lián)的核心技術(shù).目前的并聯(lián)均流技術(shù)多是在并聯(lián)模塊參數(shù)差異不大的情況下實(shí)現(xiàn)的,對(duì)于并聯(lián)系統(tǒng)在并聯(lián)模塊參數(shù)差異較大的極限情況下的穩(wěn)態(tài)和暫態(tài)性能則很少涉及.該文著重對(duì)并聯(lián)系統(tǒng)在參數(shù)差異很大的條件下的工作情況進(jìn)行了研究.首先利用基于狀態(tài)空間平均法的小信號(hào)分析對(duì)最大均流法的均流原理進(jìn)行了分析,并對(duì)并聯(lián)系統(tǒng)的穩(wěn)定性進(jìn)行了討論.之后針對(duì)已有的均流方案的局限性提出了一種新的具有限流功能的三環(huán)控制均流策略.為了驗(yàn)證所提出的方案的可行性,建立了MATLAB仿真平臺(tái),利用模塊化仿真的思想進(jìn)行了系統(tǒng)仿真,初步驗(yàn)證了方案的合理性.最后搭建了實(shí)際的DC/DC并聯(lián)系統(tǒng)試驗(yàn)平臺(tái),對(duì)采用該方案的并聯(lián)系統(tǒng)的穩(wěn)態(tài)和暫態(tài)性能進(jìn)行了全面的考察,得到了令人滿意的結(jié)果,證明了具有限流功能的三環(huán)控制均流策略是切實(shí)可行的.
標(biāo)簽: DCDC 均流 變換器 并聯(lián)
上傳用戶:lzm033
蟲(chóng)蟲(chóng)下載站版權(quán)所有 京ICP備2021023401號(hào)-1