亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

實現(xiàn)(xiàn)研究

  • 自抗擾控制器在溫控系統(tǒng)中的實用化研究及應用.rar

    本文在此背景下,針對非線性PID控制、自抗擾控制以及Smith預估器和前饋控制展開研究。為了提高控制器的穩(wěn)定性和魯棒性,設計了ADRC-Smith預估控制器和前饋ADRC控制器,將其應用于大時滯溫度控制系統(tǒng),并在此基礎上設計了吹塑機控制系統(tǒng)解決方案,通過大量的理論研究、仿真和實驗,實現(xiàn)了良好的控制效果。論文的主要工作有: 1.研究了自抗擾技術和溫度控制的現(xiàn)狀以及溫度控制的特點。 2.研究了ADRC的發(fā)展史,深入了解ADRC的原理與優(yōu)點。ADRC在控制非線性對象時比PID具有更好的控制性能,但是參數(shù)調節(jié)理論不完善,阻礙了其廣泛應用。 3.通過MATLAB仿真,得到ADRC參數(shù)之間的內在規(guī)律,通過將ADRC的參數(shù)統(tǒng)一到一個時間因子上,達到簡化調節(jié)參數(shù)個數(shù)的目的,從而降低調試難度,同時,在無時滯溫控實驗平臺上進行實驗,驗證了參數(shù)調節(jié)規(guī)律的可行性。 4.自抗擾控制器在大時滯溫控上的應用,以前文獻一般將時滯環(huán)節(jié)等效成一階慣性環(huán)節(jié),這樣就要求增加ADRC的階次,增加了調節(jié)參數(shù)個數(shù),在參數(shù)調節(jié)理論不完善的情況下無疑是增加了調試難度。本文將ADRC分別與Smith預估器和前饋控制器相結合,設計了ADRC-Smith預估控制器和前饋ADRC控制器來解決具有大時滯控制問題。這兩類新控制器的優(yōu)點是不增加ADRC的階次,是解決不確定大時滯被控對象的新途徑,也是ADRC控制器實際應用上的一次創(chuàng)新。 5.在可編程計算機控制器(PCC)搭建的大時滯溫控實驗平臺上進行實驗,將前饋ADRC控制器和貝加萊專用溫度控制器PIDXH的控制效果進行比較,實驗結果表明前饋ADRC控制器在穩(wěn)定性、魯棒性等方面都優(yōu)于PIDXH控制器。 6.研究了吹塑機控制系統(tǒng)解決方案,并在吹塑機上實驗前饋ADRc控制器,得到了良好的控制效果,進一步驗證了算法的可行性。

    標簽: 自抗擾 控制器 溫控系統(tǒng)

    上傳時間: 2013-04-24

    上傳用戶:1234xhb

  • 感應電動機參數(shù)辨識與新型控制器實用化研究.rar

    本課題來源于企業(yè)委托開發(fā)項目:大功率兩電平矢量控制變頻器的開發(fā)。課題以感應電動機變頻調速系統(tǒng)的產品化開發(fā)為目標,對感應電動機參數(shù)離線辨識技術和控制器進行了研究和試驗。本人除了參加整體系統(tǒng)的設計和制作任務外,獨立完成了參數(shù)離線辨識工作。文章介紹了一種實用的參數(shù)離線辨識方法,在綜合各種控制策略基礎上給出了一套基于DSP的數(shù)字化解決方案,通過整機進行了軟硬件調試,實現(xiàn)了設計目標。為產品化打下一定的基礎。 論文第1章介紹了矢量控制以及坐標變換,分析了電動機參數(shù)對矢量控制的影響,通過Matlab仿真了電動機參數(shù)變化對變頻器輸出的影響。 第2章對辨識主要介紹了參數(shù)辨識的算法,對感應電機靜態(tài)數(shù)學模型進行了化簡,得到各個參數(shù)與電壓電流之間的關系方程。通過單相直流試驗和單相交流試驗辨識電動機參數(shù)。采用迭代算法計算出非線性方程的數(shù)值,還介紹了一種基于電壓電流瞬時值計算電動機功率因數(shù)的方法。 第3章對控制器進行了研究,對當前比較先進的自抗擾控制,自適應控制,基于非線性的逆控制等控制策略進行了綜述。最后對基于PI轉速調節(jié)器的間接矢量控制系統(tǒng)進行了仿真,并給出了仿真結果。 第4章介紹了實驗室自主開發(fā)的基于TI公司DSP TMS320F2812的通用交流調速試驗裝置。根據(jù)通用試驗裝置的設計要求設計了控制板電路,電源板電路,功率板電路等電路,進行了調試,并應用到試驗之中,性能達到要求。 第5章介紹了整個系統(tǒng)的功能軟件設計和功能試驗結果,給出了部分程序流程圖和裝置的基本功能試驗波形。 最后就課題的研究進行了整體總結,為將來的后續(xù)研究提出建議。

    標簽: 感應電動機 參數(shù)辨識 新型控制

    上傳時間: 2013-06-25

    上傳用戶:hehuaiyu

  • 數(shù)字控制的汽車頭燈電子鎮(zhèn)流器設計及啟動過程研究.rar

    氙燈作為高強度氣體放電燈,其較好的顯色性,高光效等優(yōu)點大大超過傳統(tǒng)的鹵鎢燈,越來越受到市場的青睞,與其配套的電子鎮(zhèn)流器的研制也成了熱點。鑒于氙燈復雜的啟動特性,與模擬控制相比,數(shù)字控制因其較大的靈活性在此控制方面顯示了較大的優(yōu)勢。本文將以數(shù)字控制的汽車頭燈電子鎮(zhèn)流器為研究課題,對其一些關鍵的問題加以研究和探討。 論文的緒論部分將首先介紹汽車頭燈的發(fā)展歷史,接著對汽車頭燈電子鎮(zhèn)流器存在的難點問題做簡要的分析,指出目前其所處的現(xiàn)狀,并結合汽車頭燈未來發(fā)展趨勢談談本次課題的可行性和必要性。 第二章首先給出了目前氙燈電子鎮(zhèn)流器的基本電路結構,考慮到第一級直流升壓變流電路的重要性,較詳細討論了目前具備升壓功能的幾個典型電路的特點。鑒于氙燈較高的點火要求,對幾種典型的點火電路做了分析比較,最后討論了控制模式及其具體的控制方式。 第三章對汽車頭燈電子鎮(zhèn)流器進行了全面的設計。依據(jù)汽車頭燈電子鎮(zhèn)流器的主要技術指標,較詳細給出了主電路的設計過程,并還對其做了相應的損耗分析及效率估計。接著介紹了單級電壓遞升式點火電路設計,模數(shù)控制方式的原理,及控制回路中典型控制電路的設計,最后通過實際樣機的制作,論證其設計的合理性。 第四章詳細分析了高強度氣體放電燈的啟動特性,并根據(jù)金鹵燈和氙燈各自啟動特點及相應要求,分別提出了適合各自啟動要求的控制方法。此外,在大量文獻閱讀的基礎上,比較了當前典型的恒功率控制方案。在這個基礎上,提出了基于數(shù)模混合控制的新型恒功率控制方案。最后通過實驗驗證了這些控制方法的可行性及正確性。

    標簽: 數(shù)字控制 汽車頭燈 電子鎮(zhèn)流器

    上傳時間: 2013-07-09

    上傳用戶:kaka

  • 串聯(lián)鋰離子電池組均衡電路的研究.rar

    隨著鋰電池技術的發(fā)展和節(jié)能環(huán)保概念的普及,大容量鋰離子電池在大功率場合的應用前景也越來越廣闊,比如電動汽車、電動自行車、混合動力汽車、太陽能發(fā)電系統(tǒng)等新能源以及航空航天領域。 但是鋰離子電池組串聯(lián)使用時容量不均衡的問題大大限制其廣泛應用,加入均衡電路是有效的解決方法。尤其是對于大容量的鋰電池組,價格昂貴,更是需要有效可靠的均衡電路與均衡策略。可以說,要實現(xiàn)大容量鋰離子電池在大功率場合的廣泛應用,電池單體的有效均衡是目前的技術瓶頸之一。因此深入研究鋰離子電池組均衡電路的關鍵問題很有意義。 本文主要研究了以下幾個方面的內容: 1.總結和比較了現(xiàn)在均衡電路的研究現(xiàn)狀,包括均衡拓撲和控制策略。 2.結合均衡電路的需要,對鋰電池的特性做了詳細的測試和深入的研究,得出了對均衡有指導意義的結論。 3.介紹了本課題所采用的鋰離子電池組均衡電路的工作原理和設計流程,并給出了具體電路和參數(shù)設計的結果。 4.基于鋰離子電池的特性,提出了新穎的過均衡加滯環(huán)控制的方案。最后,給出了實驗和仿真結果,驗證了方案的可行性。 5.基于本文的研究工作對串聯(lián)鋰離子電池的均衡做了一些總結和展望。

    標簽: 串聯(lián) 鋰離子電池組 均衡電路

    上傳時間: 2013-06-11

    上傳用戶:liuchee

  • 基于DSP的全數(shù)字通信高頻開關電源的研究與設計.rar

    隨著電信業(yè)的迅猛發(fā)展,電信網(wǎng)絡總體規(guī)模不斷擴大,網(wǎng)絡結構日益復雜先進。作為通訊支撐系統(tǒng)的通訊用基礎電源系統(tǒng),市場需求逐年增加,其動力之源的重要性也日益突出。龐大的電信網(wǎng)絡高效、安全、有序的正常運行,對通信電源系統(tǒng)的品質提出了越來越嚴格的要求,推動了通信電源向著高效率、高頻化、模塊化、數(shù)字化方向發(fā)展。 本文在廣泛了解通信電源的行業(yè)現(xiàn)狀和研究熱點的基礎上,深入研究了開關電源的基本原理及相關技術,重點分析了開關電源功率因數(shù)技術及移相全橋軟開關PWM技術的基本原理,并在這基礎上設計了一款通信機房常用的48V/25A的通信電源模塊,該電源模塊由功率因數(shù)校正和DC/DC變換兩級電路組成,采用了一些最新的技術來提高電源的性能。例如,在電路拓撲中引入軟開關技術,通過采用移相全橋軟開關PWM變換器實現(xiàn)開關管的零電壓開通,減小功率器件損耗,提高電源效率;采用高性能的DSP芯片對電源實現(xiàn)數(shù)字PWM控制,克服了一般單芯片控制器由于運行頻率有限,無法產生足夠高頻率和精度的PWM輸出及無法完成單周期控制的缺陷;引入了智能控制技術,以模糊自適應PID控制算法取代傳統(tǒng)的PID算法,提高了開關電源的動態(tài)性能。 整篇論文以電源設計為主線,在詳細分析電路原理的基礎上,進行系統(tǒng)的主電路參數(shù)設計、輔助電路設計、控制回路設計、仿真研究、軟件實現(xiàn)。

    標簽: DSP 全數(shù)字 通信

    上傳時間: 2013-05-26

    上傳用戶:l254587896

  • 異步電機無速度傳感器矢量控制系統(tǒng)研究.rar

    異步電機無速度傳感器矢量控制技術提高了交流傳動系統(tǒng)的可靠性,降低了系統(tǒng)的實現(xiàn)成本。準確辨識電機轉速是實現(xiàn)無速度傳感器矢量控制的關鍵。 本文對無速度傳感器矢量控制系統(tǒng)進行了研究,建立了異步電動機無速度傳感器電壓解耦矢量控制系統(tǒng)和基于模型參考自適應(MRAS)的無速度傳感器矢量控制系統(tǒng)。基于MRAS的無速度傳感器矢量控制系統(tǒng)利用電動機定子電壓方程和電流方程得到電動機轉速的模型參考自適應辨識算法,在此基礎上建立了一個改進的變參數(shù)MRAS速度辨識數(shù)學模型,并利用Matlab軟件對基于該速度辨識模型的無速度傳感器異步電動機矢量控制系統(tǒng)在不同的情況下進行了詳細的仿真研究。仿真結果驗證了該改進的變參數(shù)MRAS速度辨識模型具有令人滿意的辨識精度和動態(tài)性能。 基于MRAS的轉速估算理論從本質上來說屬于基于電機理想模型的轉速估算方案,該方法依賴于電機參數(shù),而電機參數(shù)在電機運動過程中變化很大,因而給出了對電機的一些定、轉子參數(shù)進行實時辨識方法,以保持系統(tǒng)的動、靜態(tài)性能。 在傳統(tǒng)型模型參考自適應系統(tǒng)基礎上,將系統(tǒng)中原有的自適應調節(jié)機構用一個具有在線學習能力的人工神經(jīng)網(wǎng)絡取代,提出一種基于神經(jīng)網(wǎng)絡的異步電機轉速估計方法,并給出了速度估計器的神經(jīng)網(wǎng)絡結構和學習算法。最后對基于神經(jīng)網(wǎng)絡轉速估計的異步電機矢量控制系統(tǒng)進行了仿真,結果表明該系統(tǒng)具有良好的性能。 簡單介紹了基于DSP的異步電機無速度傳感器矢量控制系統(tǒng)的硬件結構以及軟件系統(tǒng)的設計。

    標簽: 異步電機 速度傳感器 矢量控制

    上傳時間: 2013-05-30

    上傳用戶:hakim

  • 串聯(lián)諧振軟開關推挽電路研究.rar

    低電壓輸入高電壓輸出的直流變換器被廣泛地應用在太陽能光伏發(fā)電系統(tǒng)、風能發(fā)電系統(tǒng)、燃料電池系統(tǒng)、車載逆變器電源等電力電子裝置中。隨著電力電子技術的發(fā)展,對該類型的變換器也提出了更高的要求。 本文主要針對中小功率的升壓變換器,對串聯(lián)諧振軟開關推挽電路進行了研究分析及實驗。 文章首先對理想工作條件下的串聯(lián)諧振軟開關推挽電路進行理論、仿真分析,并通過實驗驗證了電路損耗小、效率高的特性。三種不同的控制方案:導通時間固定、關斷時間變化的PFM調制方式,導通時間變化、關斷時間固定的PFM調制方式,PWM調制方式,被分別應用到電路中。通過理論、仿真以及實驗研究,比較分析了三種控制方案的優(yōu)缺點,特別是對軟開關特性、輸出電壓調節(jié)及適用范圍等問題做了細致分析。文章還對應用在串聯(lián)諧振軟開關推挽電路中的變壓器作了一定研究分析。根據(jù)變壓器的機理,對該電路中特有變壓器的高變比問題和漏感問題展開分析,并提出工藝和設計原理上的相應的解決方案。 為進一步實現(xiàn)能量的高效轉換,提出了基于雙變壓器結構拓撲的串聯(lián)諧振軟開關推挽電路,并進行了有關理論分析、仿真和實驗研究。同單變壓器電路相比,該電路具有開關損耗小、變壓器損耗小、效率更高的優(yōu)點,實驗結果充分驗證了以上結論。

    標簽: 串聯(lián)諧振 軟開關 推挽電路

    上傳時間: 2013-04-24

    上傳用戶:關外河山

  • 1V30A輸出應用新型同步整流驅動方案的正反激電路的研究.rar

    隨著數(shù)字集成電路技術的不斷發(fā)展,數(shù)字集成電路的供電電源-電壓調節(jié)模塊(VRM)也有了新的發(fā)展趨勢:輸出功率越來越大、輸出電壓越來越低、輸出電流越來越大。因此,對低輸出電壓、大輸出電流的VRM及其相關技術的研究在最近幾年受到廣泛的關注。 本文以36V-72V輸入、1V/30A輸出的VRM為研究對象,對VRM電路拓撲進行分類和比較,篩選出正反激拓撲為主電路,并詳細研究了針對正反激拓撲的新型同步整流驅動方案。首先,分析了在軟開關環(huán)境下,有源筘位正反激電路的詳細工作過程;其次,介紹了同步整流技術的概念,對同步整流驅動方案進行了分類,篩選出適用于正反激拓撲的新型同步整流驅動方案,并詳細分析了該驅動電路的工作原理;再次,介紹了有源箝位正反激電路主要元件的設計方法,介紹了新型同步整流驅動電路的設計要點,并給出設計實例;最后,對電路仿真,并制作了一臺36V-72V輸入、1V/30A輸出的實驗樣機,驗證了研究結果和設計方案。

    標簽: 1V30A 輸出 同步整流

    上傳時間: 2013-06-16

    上傳用戶:songnanhua

  • 大容量并聯(lián)電力有源濾波器性能改善控制技術研究.rar

    隨著對電能應用高效率的要求,基于電力電子技術的非線性負載等開關設備的應用越來越普遍,這些開關設備造成的諧波成分對電網(wǎng)的污染也越來越嚴重。這些諧波會影響其它電氣設備的正常工作,危及電網(wǎng)安全。電力有源濾波器由于能對頻率和幅值都變化的諧波進行跟蹤補償,得到了廣泛的研究。 本文是在課題組380V、260kVA純有源電力濾波器項目方案的論證階段,為提高大容量單臺純有源濾波器的效率和動、穩(wěn)態(tài)性能而做的分析、設計和仿真驗證工作。論文首先介紹了通過LCL濾波器與電網(wǎng)相連的并聯(lián)電力有源濾波器的主電路結構,進而分析了這種主電路結構在大容量和低開關頻率場合對開關紋波衰減的優(yōu)勢。通過比較PI控制和狀態(tài)反饋控制,選取全狀態(tài)反饋來達到對系統(tǒng)的穩(wěn)定控制。 將電網(wǎng)處理為擾動輸入,對LCL主電路在靜止abc坐標系中進行了建模,然后選取系統(tǒng)閉環(huán)期望極點設計了控制系統(tǒng)。為消除電網(wǎng)這個外部輸入對指令電流跟蹤的影響,引入了電壓前饋,并從理論上推導了前饋的具體關系式。之后引入了觀測器,并把對電網(wǎng)輸入的建模考慮進了觀測器,消除了電網(wǎng)輸入對狀態(tài)估計和補償輸出造成的偏差。在電力有源濾波器實際安裝時,電網(wǎng)進線和變壓器的電感是不確定的,其會加在LCL的網(wǎng)側電感上,從而使對系統(tǒng)基于狀態(tài)空間的建模產生偏差,因此文章研究了所設計的控制器對LCL網(wǎng)側電感變化的適應性。為保證電力有源濾波器的穩(wěn)態(tài)指標,對狀態(tài)反饋后的系統(tǒng)設計了重復控制器。 最后,基于設計的控制器在MATLAB/Simulink環(huán)境下建立了對1MW不控整流負載進行補償?shù)碾娏τ性礊V波器系統(tǒng)模型,進行了仿真;并對動靜態(tài)性能進行了分析,驗證了設計和理論分析的正確性。

    標簽: 大容量 并聯(lián) 電力

    上傳時間: 2013-06-20

    上傳用戶:哇哇哇哇哇

  • 光伏發(fā)電系統(tǒng)關鍵技術的研究.rar

    近年來,世界各國競相發(fā)展綠色可再生能源,太陽能因其潔凈、儲量巨大等優(yōu)點倍受青睞。在太陽能的各種應用中,光伏發(fā)電倍受關注。隨著光伏組件價格的不斷降低和電力電子技術的發(fā)展,光伏發(fā)電的系統(tǒng)容量和變換設備的轉換效率不斷增加,體積逐漸減小,對光伏發(fā)電系統(tǒng)相關設備的設計和制造提出了新的要求。 本文從提高光伏發(fā)電系統(tǒng)整體效率的角度出發(fā),以光伏發(fā)電系統(tǒng)中電能變換裝置作為研究目標,研究光伏發(fā)電中的關鍵性技術之一——光伏陣列的最大功率點跟蹤技術。主要研究適用于光伏發(fā)電系統(tǒng)的最大功率點跟蹤變換器的拓撲;研究光伏發(fā)電系統(tǒng)的最大功率點跟蹤變換器的控制方法。論文在分析研究光伏電池的工作原理及輸出特性的基礎上,分析研究了幾種基于DC/DC變換器的最大功率跟蹤算法及各自優(yōu)缺點和適用場合。在拓撲研究方面,分析研究了Buck、Boost和全橋電路應用于光伏發(fā)電中的優(yōu)缺點以及適用的最佳功率等級,并對這三種電路的功率損耗進行分析,通過仿真進行驗證。探討了把軟開關技術、三電平技術應用于光伏發(fā)電系統(tǒng)的可行性,并詳細分析了應用于光伏發(fā)電系統(tǒng)的移相全橋ZVS DC/DC變換器電路的換流過程。在理論分析的基礎上,論文設計實現(xiàn)了應用移相全橋軟開關DC/DC變換電路作為主電路的MPPT變換器,構建了1000W小型獨立光伏發(fā)電系統(tǒng),進行仿真和實驗,對實驗結果進行損耗分析。證實了移相全橋ZVS DC/DC變換電路作為中小型光伏發(fā)電系統(tǒng)的前級變換器,可以在實現(xiàn)太陽能光伏陣列的最大功率點跟蹤的同時,保證開關管實現(xiàn)軟開關,從而提高了系統(tǒng)的轉換效率和功率密度。

    標簽: 光伏發(fā)電系統(tǒng) 關鍵技術

    上傳時間: 2013-05-23

    上傳用戶:huannan88

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久激情视频| 最新日韩精品| 亚洲福利视频免费观看| 国产午夜精品久久久久久久| 国产精品福利网站| 国产精品免费一区二区三区在线观看| 国产美女一区| 亚洲国产日韩精品| 亚洲欧美日韩人成在线播放| 久久中文在线| 欧美午夜精品理论片a级按摩| 国产婷婷色综合av蜜臀av| 欧美劲爆第一页| 久久亚洲私人国产精品va| 欧美国产日韩一区二区| 国产女主播在线一区二区| 国产精品美女久久久久av超清| 亚洲精品在线电影| 亚洲免费在线观看视频| 久久中文字幕导航| 国产精品入口| 日韩午夜在线观看视频| 久久国产乱子精品免费女| 欧美日韩一区免费| 在线成人h网| 欧美在线二区| 国产精品白丝jk黑袜喷水| 亚洲国产综合91精品麻豆| 欧美专区日韩专区| 欧美性片在线观看| 亚洲国产精品va在线看黑人| 久久岛国电影| 国产精品麻豆va在线播放| 亚洲精品视频在线播放| 久久夜色精品一区| 国产日韩一区欧美| 午夜激情综合网| 欧美特黄一区| 亚洲精品少妇30p| 欧美成人精品一区二区| 一区二区三区自拍| 久久久精品动漫| 国产一区二区三区高清| 午夜精品网站| 国产精品久久久久免费a∨大胸| 亚洲美女av黄| 欧美精品久久久久久久| 亚洲精品国产精品乱码不99| 欧美成人亚洲成人| 亚洲精品免费网站| 欧美精品在线视频观看| 亚洲精品三级| 欧美激情小视频| 亚洲精品在线视频观看| 欧美成ee人免费视频| 亚洲黑丝一区二区| 欧美精品日韩精品| 99国产精品一区| 欧美三级日韩三级国产三级| 在线视频亚洲| 国产精品入口| 久久精品国产清高在天天线| 国产一区清纯| 浪潮色综合久久天堂| 亚洲成色www久久网站| 欧美成人亚洲成人| 亚洲精品欧美极品| 欧美私人网站| 国产视频久久久久| 亚洲精品乱码久久久久久蜜桃91| 欧美电影免费观看网站| 亚洲精品社区| 国产精品电影网站| 欧美在线免费播放| **欧美日韩vr在线| 欧美日本视频在线| 午夜精品久久久久久久| 国产一区二区成人| 欧美成年人在线观看| 一本一本久久a久久精品牛牛影视| 欧美日韩精品免费观看视频完整 | 一区二区三区不卡视频在线观看 | 欧美一区二区三区视频在线| 国产专区精品视频| 欧美精品一区二区蜜臀亚洲| 亚洲一区二区在线| 精久久久久久| 欧美日韩黄色一区二区| 欧美影院在线| 99re6热只有精品免费观看| 国产精品视频免费观看www| 久久婷婷av| 亚洲视频电影图片偷拍一区| 国产一区二区三区成人欧美日韩在线观看| 欧美一区二区精品| 亚洲国产日韩在线一区模特| 国产精品大片免费观看| 欧美有码在线观看视频| 在线成人激情视频| 欧美性猛交xxxx乱大交蜜桃| 久久精品国产亚洲一区二区三区| 亚洲国产高清在线| 国产精品揄拍一区二区| 久热国产精品| 羞羞漫画18久久大片| 欧美日韩一区在线播放| 欧美中日韩免费视频| 亚洲精品美女久久久久| 国产亚洲福利社区一区| 欧美深夜影院| 欧美成人综合| 久久久久亚洲综合| 亚洲夜间福利| 亚洲欧洲视频在线| 国产一区二区三区高清在线观看| 欧美精品www| 久久免费视频在线观看| 午夜在线精品| 一区二区三区欧美成人| 亚洲国产精品久久久久秋霞蜜臀| 国产精品乱看| 欧美日韩不卡| 蜜臀av性久久久久蜜臀aⅴ| 久久成人免费| 亚洲一二三级电影| 夜夜嗨av色综合久久久综合网| 狠狠色2019综合网| 国产亚洲精久久久久久| 国产精品美女久久久久久久| 欧美久久视频| 欧美.www| 欧美gay视频| 麻豆精品在线视频| 久久琪琪电影院| 久久精品欧洲| 欧美一区二区播放| 中文无字幕一区二区三区| 亚洲精品一区在线观看| 亚洲国产日韩欧美综合久久| 在线电影院国产精品| 精品成人在线视频| 精品成人在线视频| 激情成人在线视频| 极品少妇一区二区| 在线精品一区| 在线观看久久av| 亚洲国产精彩中文乱码av在线播放| 国产综合自拍| 禁断一区二区三区在线| 国产综合自拍| 亚洲国产精品久久人人爱蜜臀 | 欧美午夜精品久久久久久孕妇 | 国产一区二区中文字幕免费看| 国产精品欧美日韩久久| 国产精品美女久久久久久2018 | 欧美va天堂在线| 久久精品夜色噜噜亚洲a∨| 久久成人免费日本黄色| 久久久久www| 久久免费精品视频| 久久综合中文色婷婷| 欧美高清视频一区二区三区在线观看 | 亚洲老板91色精品久久| 国产欧美精品在线播放| 国产午夜精品在线| 国产亚洲一区二区三区在线观看 | 欧美成熟视频| 欧美日韩国产成人在线91| 欧美日韩国产高清| 欧美调教vk| 欧美视频在线观看视频极品| 国产精品第三页| 国内视频精品| 亚洲人成人99网站| 亚洲欧美精品suv| 久久久久91| 欧美精品一区二区高清在线观看| 欧美体内谢she精2性欧美| 国产欧美一区二区三区国产幕精品| 国产一区二区三区高清在线观看| 国产在线拍揄自揄视频不卡99| 亚洲高清激情| 亚洲一区三区电影在线观看| 久久视频一区| 国产精品久久久久高潮| 国产综合色产| 在线一区二区三区做爰视频网站 | 亚洲免费电影在线| 欧美一区三区三区高中清蜜桃| 欧美aaaaaaaa牛牛影院| 国产精品久久午夜夜伦鲁鲁| 亚洲第一区在线观看| 亚洲一区欧美激情| 久久久无码精品亚洲日韩按摩| 欧美视频在线观看免费| 伊人久久大香线| 欧美一区1区三区3区公司| 欧美日韩在线视频一区| 亚洲成色精品| 久久精品一区二区三区中文字幕 |