亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

差動<b>放大器</b>

  • 三相電子電能表檢定裝置

    基本誤差 在相關國標、規程規定的參比條件下,輸出電流為50mA~120A裝置的最大允許誤差(含標準表)小于0.01%,輸出電流為1mA~50mA裝置的最大允許誤差(含標準表)小于0.015%。 可實現三只三相電能表的三相四線及三相三線的誤差測量;可測試無功電能基本誤差。 1.2.3.2 測量重復性 裝置的測量重復性用實驗標準差表征,在進行不少于10次的重復測量,其測量結果的標準偏差估計值s不超過0.001%。 1.2.3.3  輸出電量 1.2.3.3.1 電壓電流量程 輸出電壓范圍:3×(57.7V~380V); 每檔電壓輸出瞬間及相位切換時不允許有尖峰。每檔電壓輸出上限達120%Un。  輸出電流范圍:3×(0.001A~100A); 輸出電流范圍上限要求達到120A。每檔電流輸出瞬間及相位切換時不允許有尖峰。每檔電流輸出上限達120%In。 1.2.3.3.2 輸出負載容量 三表位:電壓輸出:每相≥150VA         電流輸出:   每相≥300VA 1.2.3.3.3 輸出電量調節 (1)  電壓、電流調節: 調節范圍:0%~120%                   調節細度:優于0.005%。 (2)  相位調節: 調節范圍:0°~360°                 調節細度:優于0.01°。 (3) 頻率調節: 調節范圍:45Hz~65Hz                 調節細度:優于0.001Hz。 1.2.3.3.4 輸出功率穩定度:<0.005% / 3min . 穩定度按JJG597的5.2.3.13方法計算。 1.2.3.3.5 輸出電壓電流失真度 裝置輸出電壓電流失真度范圍:小于0.1%。 1.2.3.3.6起動電流:裝置具有起動電流調整、測量功能,能輸出0.5mA的起動電流。 起動電流的測量誤差≤ ?5%,起動功率的測量誤差 ≤ ?10%。 1.2.3.3.7三相電量對稱性 任一相(或線)電壓和相(或線)電壓平均值之差不大于±0.1%;各相電流與其平均值之差不大于±0.2%;任一相電壓與對應相電流間的相位角之差不大于0.5°;任一相電壓(電流)與另一相電壓(電流)間相位角與120°之差不大于0.5°。 1.2.3.4 多路隔離輸出的裝置各路輸出負載影響應符合JJG597—2005中 3.8條的規定。 1.2.3.5 確定同名端鈕間電位差應符合JJG597—2005中3.9條的規定。 1.2.3.6 多路輸出的一致性應符合JJG597—2005中3.7條的規定。 1.2.3.7 監視示值的誤差 監視儀表應有足夠的測量范圍,電壓示值誤差限為±0.2%,電流、功率示值誤差限為±0.2%,相位示值誤差限為±0.3°,頻率示值誤差限為±0.1%,啟動電流和啟動功率的監視示值誤差不超過5%(啟動電流為1mA時的監視示值誤差也不應超過5%)。各監視示值的分辨力應不超過其對應誤差限的1/5。 1.2.3.8 具有消除自激的功能。可自動消除開機或關機時產生的尖脈沖。 1.2.3.9 裝置的磁場 由裝置產生的在被檢表位置的磁感應強度不大于下列數值: I≤10A時,B≤0.0025mT; I=200A時,B≤0.05mT;10A到200A之間的磁感應強度極限值可按內插法求得。 1.2.3.10  電磁兼容性  (1)電磁騷擾的抗擾度 裝置的設計能保證在傳導和輻射的電磁騷擾以及靜電放電的影響下不損壞或不受實質性影響(如元器件損毀、控制系統死機、精度出現變化等影響正常檢定工作的現象),騷擾量為靜電放電、射頻電磁場。 (2)無線電干擾抑制 裝置不發生能干擾其他設備的傳導和輻射噪聲。 1.2.3.11 穩定性變差 (1)短期穩定性變差 裝置基本誤差合格的同時,在15min內的基本誤差最大變化值(連續測量7h),不大于裝置對應最大允許誤差的20%。 (2)檢定周期內變差 檢定周期內裝置基本誤差合格的同時,其最大變化值,不大于0.01%。 1.2.3.12 安全 裝置的絕緣強度試驗要求和與安全有關的結構要求符合GB 4793.1的規定。 1.2.3.13 脈沖輸出 同時檢測三路被檢脈沖:顯示當前誤差平均誤差和標準偏差;同時檢測的被檢脈沖的常數、工作方式和脈沖個數,可完全不同;誤差測量所需要的輸入參數的位數,應能覆蓋目前各種標準表和的檢測需要。對每一表位應有高頻、低頻脈沖信號的BNC接收端口,能接收≤600kHz的有/無源脈沖(5-30V脈沖幅值)。 1.2.3.14供電電源 供電電源在3×220V/380V?10?,50Hz?2Hz裝置正常工作。

    標簽: 三相 電子電能表 檢定裝置

    上傳時間: 2021-06-15

    上傳用戶:li091122

  • IDAQ-8098-SW用戶手冊

           IDAQ-8098 控溫模塊是專為精確控溫應用而設計的,采用多 CPU 方案實現采集和 PID 控制分開工 作,采用 Modbus 通信協議,通過 RS-485 通信接口下載控溫參數,并實時監測被控溫區實時溫度、控溫 狀態和數字量輸入輸出狀態,還可以控制控溫的啟停等功能。啟動控溫后,模塊能夠按照設定的控溫參數 自動工作,無須其他設備干預,這樣就大大減輕了控制系統的工作負擔,提高了整個系統的穩定性和可靠 性。IDAQ-8098 控溫模塊完全實現系統的溫度采集和控制,有效減少了技術部門在該功能上的開發和調試 時間,使產品能夠快速占領市場。       ◆ 多 CPU 工作方式,采集熱電偶信號和 PID 控制完全分開協同式工作 ◆ 控溫方式:增量 PID 加模糊控制,自適應 PID 控制(保存自適應的最佳參數供下次使用) ◆ 8 個控溫通道各自獨立 PID 控制,對應于 8 個通道的熱電偶輸入 ◆ PID 采樣周期可達 500ms ◆ 控溫精度最高能達到±0.5℃ ◆ 五種脈寬輸出指示五種控溫狀態(不控溫、加熱、恒溫、預警和報警) ◆ 可通過 RS-485 串口遠程監視工作狀態 ◆ 可和 PLC 掛接通訊,組合成最完美最經濟最可靠的 IO 控制和被控溫區溫度控制系統◆ 有效分辨率:16 位 ◆ 通道:8 路差分 ◆ 輸入類型:輸入類型:熱電偶,PT100,0~20mA,0-10V,-20-+20mV,-78-+78mV,-312-+312mV,0-5000mV ◆ 熱電偶類型與溫度范圍: J -200 ~ 1200℃ K -200 ~ 1370℃ T -200 ~ 400℃ E -200 ~ 1000℃ R -50 ~ 1760℃ S -50 ~ 1760℃ B 0 ~ 1820℃ PT100 溫度范圍:-200 ~ 660℃ ◆ 隔離電壓:3000Vdc ◆ 故障與過壓保護:最大承受電壓±35V ◆ 采樣速率:20 采樣點/ 秒(總共) ◆ 輸入阻抗:20M ◆ 精度:±0.1%( 電壓輸入) ◆ 零漂移:±3uV/℃

    標簽: PID溫控模塊

    上傳時間: 2021-12-09

    上傳用戶:

  • 你好 放大器-初識篇-楊建國 西安交通大學 2014

            讓人魂牽夢繞的東西,都具備三個特點:有難度、能實現、你喜歡。下棋、足球、打游戲……追你心儀的對象,但凡你能說得出來的,基本都如此。      趁著年輕,為自己找個興趣所在吧,最好,它還能養家糊口。      放大器,就具備前兩個特點。這本書,只想讓你喜歡它。      ……      而現在,你拿起這本書的時候,可能是種類繁多、秉性迥異,但青春健 朗、招人憐愛的放大器,第一次,如此端莊地站在你的面前,笑容可掬。  好吧……很高興認識你。      你好,放大器。    運算放大器     運算放大器又稱運放,其實就是一個差分輸入、多級、直接耦合、高增益放大電路 (通常大于 10000 倍),用集成電路工藝生產在一個單芯片集成電路中。它有兩個差分輸入 端,一個或者兩個輸出端,兩個供電電源端    全差分運放的誕生      后來,在這種標準運放的基礎上,科學家又研制了另外一種運放,稱為全差分運放, 它有差分輸入腳 IN+和 IN-,差分輸出腳 OUT+和 OUT-,除此之外還有一個輸入腳,稱之 為 VOCM。    功能放大器     如果某個以運放為核心的放大電路,非常常用,生產廠家就會考慮把這個放大電路 (包括運放和外圍電阻)進一步集成,提供給用戶。這就是功能放大器。    儀表放大器      高阻差分輸入,輸出有單端的,也有差分的,增益一般可以用一個外部電阻,由用戶 選擇設定。常用于儀器儀表的最前端,和傳感器直接接觸。      …… 

    標簽: 放大器

    上傳時間: 2022-02-15

    上傳用戶:

  • 你好 放大器初識篇

    《你好,放大器(初識篇)》,科學出版社出版,外文書名: Hello, Amplifier,作者:楊建國。本書是《你好,放大器》的初識篇,是學習放大器的入門書。第1章介紹放大器的歷史和分類定義。第2章用大量篇幅介紹放大器關鍵指標,以及閱讀數據手冊的方法。第3章介紹各種各樣的運算放大器,包括精密運放、高速運放、電流反饋型運放和全差分運放。第4章是使用放大器的共性問題,這些問題都是作者在指導學生的過程中頻繁遇到的。第5章介紹一些典型的放大電路。最后,第6章針對初學者介紹儀器、調試、故障排查,以及報告撰寫。針對“如何讓更多用戶簡單使用放大器”這一問題,《你好,放大器(初識篇)》從學習、應用、設計等多角度,講解放大器定義、分類和選用,運算放大器的關鍵指標,多種多樣的運算放大器,使用放大器的共性問題,典型放大電路分析,儀器使用、焊接、調試和撰寫報告等內容。《你好,放大器(初識篇)》適合學過模擬電子技術但還不能完全駕馭放大器的讀者,特別是參加全國大學生電子設計競賽的學生閱讀,也適用于企業的員工培訓和再提高。

    標簽: 放大器

    上傳時間: 2022-02-28

    上傳用戶:kent

  • 高級音響電路設計

    摘要本文以音響放大系統為研究對象,以電子技術基本理論為基礎,結合當前模擬電子應用技術,對音響放大系統進行了分析和研究,針對現代人群對功放效率的要求和特征,設計出該音響放大系統。音響的音質是音響最重要的環節,由于我國在高級音響的設計上起步較晚,對新技術的開發與應用遠遠落后于國外的發大國家,從放大電路的設計,揚聲器的設計,對音像的還原,降低信噪比,低音的厚重感等等都遠遠超出我國自主產品,但是我國的音響企業已認識到技術的不足,正在加大研發的投入,培養技術人才,努力學習和趕超國外的先進技術。本文對現代高級音響設計的工藝有初步的了解,研究高級音響設計的電路組成,能夠理解電路圖的原理,對新技術、新知識進行研究學習,并將所學用于實踐在現代音有普及中,人們因生活層次、文化習俗、音樂修養、欣賞口味的不同,令對相通電氣指標的音響設備得出不同的評價。所以,就高保真度功放而言,應該達到電氣指標與實際聽音指標的平衡與統一。隨者技術的發展,人民生活水平的提高,人們對音頻技術的功放的效率要求隨之提高。模擬的功率放大器經過了幾十年的發展,在這方面的技術已經相當成熟。正因為這樣,數字功放應運而生。近年來,利用脈寬調劑原理設計的D類功放也進入了音響領域".國外半導體一直專注于研發高性能的放大器與比較器,目前已成功推出一系列型號齊全的運算放大器,其中包含基本的芯片以及特殊應用標準產品(ASSP),以滿足市場上對高精度、高速度、低電壓及低功率放大器的需求。另外國外在數字音頻功率放大器領城進行了二三十年的研究,六十年代中期,日本研制出8bit數字音頻功率發大器。1893年,M.B.Sandler等學者提出D類數字PCM功率發大器的基本結構。主要是圍繞如何將PCM信號轉化為PWM信號。把信號的幅度信號用不同的脈沖寬度來表示。此后,研究的焦點是降低其時鐘頻率,提高音質。隨若數字信號處理(DSP)技術和新型功率器件及應用的發展,開始實用化的16位數字音額功放成為可能。

    標簽: 音響電路

    上傳時間: 2022-06-18

    上傳用戶:

  • 基于鎖相放大器的微弱信號檢測研究

    摘要:微弱信號檢測是隨著工程應用而不斷發展的一門學科。近年來,微弱信號檢測相關研究已經成為一個熱點研究領域,具體表現在對微弱信號檢測方法的探尋、對微弱信號檢測系統的設計、對微弱信號檢測儀器的研發。本文中主要研究了利用鎖相放大器進行有用信號提取的微弱信號檢測原理與實現方法。首先介紹了微弱信號檢測的基本理論與常見的幾種檢測方法,重點介紹了利用數字鎖相放大器進行信號檢測的原理。在此基礎上,結合數字鎖相放大器的相關檢測原理,給出了數字鎖相放大器的整體設計方案,著重從相關檢測原理算法和移相算法方面對數字鎖相放大器的設計作了深入探討。重點研究了采樣頻率與相關運算結果的關系,在設計的過程中先使用MATLAB進行算法上的模擬,從模擬結果發現參考信號為方波而采樣頻率與信號頻率成一定關系時,系統相關運算存在固有誤差。為減少該誤差,提出了將動態采樣率的方法引入數字鎖相放大器設計中,運算發現動態采樣的采樣頻率數越多,奇點產生的誤差越少,有效地解決奇點問題。最后,使用LabVIEW對設計的系統進行仿真測試。測試結果表明該數字鎖相放大器在信號幅度為5V、噪聲標準差小于等于50時(SWR=.34.04dB),能有效地檢測出頻率為500kHz以下的信號,系統檢測結果與理論計算值的相對誤差基本不超過2%。

    標簽: 鎖相放大器 微弱信號檢測

    上傳時間: 2022-06-18

    上傳用戶:

  • 射頻功率放大器集成電路研究

    射頻功率放大器在雷達、無線通信、導航、衛星通訊、電子對抗設備等系統中有著廣泛的應用,是現代無線通信的關鍵設備.與傳統的行被放大器相比,射頻固態功率放大器具有體積小、動態范圍大、功耗低、壽命長等一系列優點;由于射頻功率放大器在軍事和個人通信系統中的地位非常重要,使得功率放大器的研制變得十分重要,因此對該課題的研究具有非常重要的意義.設計射頻集成功率放大器的常見工藝有GaAs,SiGe BiCMOS和CMOS等.GaAs工藝具有較好的射頻特性和輸出功率能力,但其價格昂貴,工藝一致性差;CMOS工藝的功率輸出能力不大,很難應用于高輸出功率的場合;而SiGe BiCMOS工藝的性能介于GaAS和CMOS工藝之間,價格相對低廉并和CMOS電路兼容,非常適合于中功率應用場合.本文介紹了應用與無線局域網和Ka波段的射頻集成功率放大器的設計和實現,分別使用了CMOS,SiGe BiCMOS,GaAs三種工藝.(1)由SMIC 0.18um CMOS工藝實現的放大器工作頻率為2.4GHz,采用了兩級共源共柵電路結構,在5V電源電壓下仿真結果為小信號增益22dB左右,1dB壓縮點處輸出功率為20dBm左右且功率附加教率PAE大于15%,最大飽和輸出功率大于24dBm且PAE大于20%,芯片面積為1.4mm*0.96mm;(2)由IBM SPAE 0.35um SiGe BiCMOS工藝實現的功率放大器工作頻率為5.25GHz,分為前置推動級和末級功率級,電源電壓為3.3V,仿真結果為小信號增益28dB左右,1dB壓縮點處輸出功率大于26dBm,功率附加效率大于15%,最大飽和輸出功率為29.5dBm,芯片面積為1.56mm"1.2mm;(3)由WIN 0.15um GaAs工藝實現的功率放大器工作頻率為27-32GHz,使用了三級功率放大器結構,在電源電壓為5V下仿真結果為1dB壓縮點的輸出功率Pras 26dBm,增益在20dB以上,最大飽和輸出功率為29.9dBm且PAE大于25%,芯片面積為2.76mm"1.15mm.論文按照電路設計、仿真、版圖設計、流片和芯片測試的順序詳細介紹了功率放大器芯片的設計過程,對三種工藝實現的功率放大器進行了對比,并通過各自的仿真結果對出現的問題進行了詳盡的分析。

    標簽: 射頻功率放大器 集成電路

    上傳時間: 2022-06-20

    上傳用戶:shjgzh

  • 全波精密整流電路

    當山>0時,必然使集成運放的輸出uo<0,從而導致二極管D2導通,D1截止,電路實現反相比例運算,輸出電壓當u<0時,必然使集成運放的輸出uo>0,從而導致二極管D1導通D2截止,R+中電流為零,因此輸出電壓uo=0。u和uo的波形如圖(b)所小如果設二極管的導通電壓為0.7V,集成運放的開環差模放大倍數為50萬倍,那么為使二極管D1導通,集成運放的凈輸入電壓0.7v=014×10-=145×10同理可估算出為使D2導通集成運放所需的凈輸入電壓,也是同數量級。可見,只要輸入電壓u使集成運放的凈輸入電壓產生非常微小的變化,就可以改變D1和D2工作狀態,從而達到精密整流的目的在半波精密整流電路中,當u>0時,U=Ku(K>0),當u<0時,U=0若利用反相求和電路將-Ku與山負半周波形相加,就可實現全波整流。分析由A所組成的反相求和運算電路可知,輸出電壓當u>0時,U=2u,u∞=-(-2u+u)=u;當u<0時,uo=0、想想?)uc-u;所以故此圖也稱為絕對值電路。當輸入電壓為正弦波和三角波時,電路輸出波形分別如圖所示。

    標簽: 精密整流電路

    上傳時間: 2022-06-26

    上傳用戶:

  • 運算放大器權威指南第4版 英文原版

    運算放大器在現代電子設計中扮演著至關重要的角色,發展至今,已經進入射頻設計領域,回歸到了全差分結構,也開啟了在信號鏈設計中的新應用領域。    本書是運算放大器電路設計領域一部重要著作,源自全球領導廠商德州儀器公司設計參考文檔,第4版由資深電子工程師Bruce Carter一人擔綱,更注重實踐指導,適合系統性閱讀。作者首先簡要回顧了運放基礎知識,然后展開分析具體的運放電路設計及其注意事項,給出了大量電路實例以及諸多珍貴使用技巧,并將“做減法”的解決問題方式作為全書電路設計指導思想。任何從事電子電路設計的工程技術人員都會從中受益匪淺。    書中還介紹了一些設計輔助工具,方便讀者設計運放電路,其中既有生產廠家提供的,也有作者自己編寫的(見 http://booksite.elsevier.com/9780123914958/ )。

    標簽: 運算放大器

    上傳時間: 2022-06-28

    上傳用戶:

  • 矢量控制FOC基本原理

    矢量控制(FOC)基本原理一、基本概念1.1模型等效原則交流電機三相對稱的靜止繞組A、B、C,通以三相平衡的正弦電流時,所產生的合成磁動勢是旋轉磁動勢F,它在空間呈正弦分布,以同步轉速o1(即電流的角頻率)順著A-B-C的相序旋轉。這樣的物理模型如圖1-1a所示。然而,旋轉磁動勢并不一定非要三相不可,單相除外,二相、三相、四相……等任意對稱的多相繞組,通以平衡的多相電流,都能產生旋轉磁動勢,當然以兩相最為簡單。圖1-1b中繪出了兩相靜止繞組a和β,它們在空間互差90°,通以時間上互差90°的兩相平衡交流電流,也產生旋轉磁動勢F。再看圖1-1c中的兩個互相垂直的繞組M和T,通以直流電流in和i,產生合成磁動勢F,如果讓包含兩個繞組在內的整個鐵心以同步轉速旋轉,則磁動勢F自然也隨之旋轉起來,成為旋轉磁動勢。把這個旋轉磁動勢的大小和轉速也控制成與圖1-1a一樣,那么這三套繞組就等效了。

    標簽: 矢量控制 foc

    上傳時間: 2022-06-30

    上傳用戶:zhaiyawei

主站蜘蛛池模板: 建水县| 杨浦区| 宝鸡市| 高邮市| 兴文县| 丹巴县| 茌平县| 古丈县| 宜章县| 东乌珠穆沁旗| 东光县| 湟中县| 长治县| 威宁| 龙游县| 驻马店市| 绥化市| 兴仁县| 双辽市| 富顺县| 西峡县| 花垣县| 彭泽县| 武安市| 渭源县| 顺义区| 锡林郭勒盟| 桐乡市| 桐乡市| 伊川县| 三原县| 仪陇县| 吉隆县| 齐河县| 岳阳市| 喜德县| 西和县| 栾城县| 元朗区| 会泽县| 安义县|