問題描述
序列Z=<B,C,D,B>是序列X=<A,B,C,B,D,A,B>的子序列,相應的遞增下標序列為<2,3,5,7>。
一般地,給定一個序列X=<x1,x2,…,xm>,則另一個序列Z=<z1,z2,…,zk>是X的子序列,是指存在一個嚴格遞增的下標序列〈i1,i2,…,ik〉使得對于所有j=1,2,…,k使Z中第j個元素zj與X中第ij個元素相同。
給定2個序列X和Y,當另一序列Z既是X的子序列又是Y的子序列時,稱Z是序列X和Y的公共子序列。
你的任務是:給定2個序列X、Y,求X和Y的最長公共子序列Z。
標簽:
lt
序列
上傳時間:
2014-01-25
上傳用戶:netwolf
Floyd-Warshall算法描述
1)適用范圍:
a)APSP(All Pairs Shortest Paths)
b)稠密圖效果最佳
c)邊權可正可負
2)算法描述:
a)初始化:dis[u,v]=w[u,v]
b)For k:=1 to n
For i:=1 to n
For j:=1 to n
If dis[i,j]>dis[i,k]+dis[k,j] Then
Dis[I,j]:=dis[I,k]+dis[k,j]
c)算法結束:dis即為所有點對的最短路徑矩陣
3)算法小結:此算法簡單有效,由于三重循環結構緊湊,對于稠密圖,效率要高于執行|V|次Dijkstra算法。時間復雜度O(n^3)。
考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍色部分,可以更直觀地得到I,j的連通情況。
標簽:
Floyd-Warshall
Shortest
Pairs
Paths
上傳時間:
2013-12-01
上傳用戶:dyctj
TLC2543是TI公司的12位串行模數轉換器,使用開關電容逐次逼近技術完成A/D轉換過程。由于是串行輸入結構,能夠節省51系列單片機I/O資源;且價格適中,分辨率較高,因此在儀器儀表中有較為廣泛的應用。
TLC2543的特點
(1)12位分辯率A/D轉換器;
(2)在工作溫度范圍內10μs轉換時間;
(3)11個模擬輸入通道;
(4)3路內置自測試方式;
(5)采樣率為66kbps;
(6)線性誤差±1LSBmax;
(7)有轉換結束輸出EOC;
(8)具有單、雙極性輸出;
(9)可編程的MSB或LSB前導;
(10)可編程輸出數據長度。
TLC2543的引腳排列及說明
TLC2543有兩種封裝形式:DB、DW或N封裝以及FN封裝,這兩種封裝的引腳排列如圖1,引腳說明見表1
TLC2543電路圖和程序欣賞
#include<reg52.h>
#include<intrins.h>
#define uchar unsigned char
#define uint unsigned int
sbit clock=P1^0; sbit d_in=P1^1;
sbit d_out=P1^2;
sbit _cs=P1^3;
uchar a1,b1,c1,d1;
float sum,sum1;
double sum_final1;
double sum_final;
uchar duan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};
uchar wei[]={0xf7,0xfb,0xfd,0xfe};
void delay(unsigned char b) //50us
{
unsigned char a;
for(;b>0;b--)
for(a=22;a>0;a--);
}
void display(uchar a,uchar b,uchar c,uchar d)
{
P0=duan[a]|0x80;
P2=wei[0];
delay(5);
P2=0xff;
P0=duan[b];
P2=wei[1];
delay(5);
P2=0xff;
P0=duan[c];
P2=wei[2];
delay(5);
P2=0xff;
P0=duan[d];
P2=wei[3];
delay(5);
P2=0xff;
}
uint read(uchar port)
{
uchar i,al=0,ah=0;
unsigned long ad;
clock=0;
_cs=0;
port<<=4;
for(i=0;i<4;i++)
{
d_in=port&0x80;
clock=1;
clock=0;
port<<=1;
}
d_in=0;
for(i=0;i<8;i++)
{
clock=1;
clock=0;
}
_cs=1;
delay(5);
_cs=0;
for(i=0;i<4;i++)
{
clock=1;
ah<<=1;
if(d_out)ah|=0x01;
clock=0;
}
for(i=0;i<8;i++)
{
clock=1;
al<<=1;
if(d_out) al|=0x01;
clock=0;
}
_cs=1;
ad=(uint)ah;
ad<<=8;
ad|=al;
return(ad);
}
void main()
{
uchar j;
sum=0;sum1=0;
sum_final=0;
sum_final1=0;
while(1)
{
for(j=0;j<128;j++)
{
sum1+=read(1);
display(a1,b1,c1,d1);
}
sum=sum1/128;
sum1=0;
sum_final1=(sum/4095)*5;
sum_final=sum_final1*1000;
a1=(int)sum_final/1000;
b1=(int)sum_final%1000/100;
c1=(int)sum_final%1000%100/10;
d1=(int)sum_final%10;
display(a1,b1,c1,d1);
}
}
標簽:
2543
TLC
上傳時間:
2013-11-19
上傳用戶:shen1230