亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

快門(mén)速度

  • 基于FPGA的Viterbi譯碼器設(shè)計與實現(xiàn).rar

    卷積碼是廣泛應(yīng)用于衛(wèi)星通信、無線通信等多種通信系統(tǒng)的信道編碼方式。Viterbi算法是卷積碼的最大似然譯碼算法,該算法譯碼性能好、速度快,并且硬件實現(xiàn)結(jié)構(gòu)比較簡單,是最佳的卷積碼譯碼算法。隨著可編程邏輯技術(shù)的不斷發(fā)展,使用FPGA實現(xiàn)Viterbi譯碼器的設(shè)計方法逐漸成為主流。不同通信系統(tǒng)所選用的卷積碼不同,因此設(shè)計可重配置的Viterbi譯碼器,使其能夠滿足多種通信系統(tǒng)的應(yīng)用需求,具有很重要的現(xiàn)實意義。 本文設(shè)計了基于FPGA的高速Viterbi譯碼器。在對Viterbi譯碼算法深入研究的基礎(chǔ)上,重點研究了Viterbi譯碼器核心組成模塊的電路實現(xiàn)算法。本設(shè)計中分支度量計算模塊采用只計算可能的分支度量值的方法,節(jié)省了資源;加比選模塊使用全并行結(jié)構(gòu)保證處理速度;幸存路徑管理模塊使用3指針偶算法的流水線結(jié)構(gòu),大大提高了譯碼速度。在Xilinx ISE8.2i環(huán)境下,用VHDL硬件描述語言編寫程序,實現(xiàn)(2,1,7)卷積碼的Viterbi譯碼器。在(2,1,7)卷積碼譯碼器基礎(chǔ)上,擴展了Viterbi譯碼器的通用性,使其能夠?qū)Σ煌木矸e碼譯碼。譯碼器根據(jù)不同的工作模式,可以對(2,1,7)、(2,1,9)、(3,1,7)和(3,1,9)四種廣泛運用的卷積碼譯碼,并且可以修改譯碼深度等改變譯碼器性能的參數(shù)。 本文用Simulink搭建編譯碼系統(tǒng)的通信鏈路,生成測試Viterbi譯碼器所需的軟判決輸入。使用ModelSim SE6.0對各種模式的譯碼器進(jìn)行全面仿真驗證,Xilinx ISE8.2i時序分析報告表明譯碼器布局布線后最高譯碼速度可達(dá)200MHz。在FPGA和DSP組成的硬件平臺上進(jìn)一步測試譯碼器,譯碼器運行穩(wěn)定可靠。最后,使用Simulink產(chǎn)生的數(shù)據(jù)對本文設(shè)計的Viterbi譯碼器的譯碼性能進(jìn)行了分析,仿真結(jié)果表明,在同等條件下,本文設(shè)計的Viterbi譯碼器與Simulink中的Viterbi譯碼器模塊的譯碼性能相當(dāng)。

    標(biāo)簽: Viterbi FPGA 譯碼器

    上傳時間: 2013-06-24

    上傳用戶:myworkpost

  • 基于FPGA的數(shù)字存儲示波器的設(shè)計.rar

    數(shù)字存儲示波器在儀器儀表領(lǐng)域中占有重要的地位,應(yīng)用范圍相當(dāng)廣泛,所以對示波器的研制有重要的理論和實際意義。本文針對數(shù)字存儲示波器的設(shè)計進(jìn)行了深入的研究,旨在研制出100MHz帶寬的數(shù)字存儲示波器。 從各個方面考慮,選用了DSP、FPGA和單片機的方案來設(shè)計整個系統(tǒng)。整個系統(tǒng)采用單通道的方式。信號進(jìn)來首先經(jīng)過前端的調(diào)理電路把信號電壓調(diào)整到AD的輸入電壓范圍之內(nèi),這里調(diào)理電路主要是由信號衰減電路和信號放大電路所組成。調(diào)理后的信號再送到AD變換電路里面完成信號的數(shù)字化。然后把AD轉(zhuǎn)換后的數(shù)據(jù)送到FPGA中,并把數(shù)據(jù)保存到FPGA中的FIFO中,F(xiàn)PGA中的電路主要包括有FIFO、觸發(fā)系統(tǒng)、峰值檢測、時基電路等。 DSP處理器主要是用來從FIFO中提取數(shù)據(jù)并進(jìn)行相應(yīng)的處理。因為DSP運算速度快,所以本文利用DSP來完成濾波和波形重建的時候的插值算法等功能。然后DSP利用其多緩沖串口把數(shù)據(jù)送到單片機,單片機把從DSP中發(fā)送過來的數(shù)據(jù)顯示到LCD上,同時利用單片機來管理鍵盤等功能。在軟件方面主要完成了程序的一些初始化驅(qū)動,比如說是FLASH驅(qū)動、LCD驅(qū)動、DSP串口初始化、FPGA初始化等相關(guān)工作。 由于本文采用FPGA,使得數(shù)字存儲示波器的設(shè)計比較靈活,容易升級??梢愿鶕?jù)自己的需要進(jìn)行相關(guān)的改進(jìn),例如對外圍電路做進(jìn)一步地擴展。

    標(biāo)簽: FPGA 數(shù)字存儲示波器

    上傳時間: 2013-04-24

    上傳用戶:hw1688888

  • 基于FPGA的DDS信號源設(shè)計.rar

    作為電子類專業(yè)學(xué)生,實驗是提高學(xué)生對所學(xué)知識的印象以及發(fā)現(xiàn)問題和解決問題的能力,增加學(xué)生動手能力的必須環(huán)節(jié)。本設(shè)計的目的就是開發(fā)一套滿足學(xué)生實驗需求的信號源,基于此目的本信號源并不需要突出的性能,但經(jīng)濟(jì)上要求低成本,同時要求操作簡單,能夠輸出多種波形,并且利于學(xué)生在此平臺上認(rèn)識信號源原理,同時方便在此平臺上進(jìn)行拓展開發(fā)。 設(shè)計中運用虛擬儀器技術(shù)將計算機屏幕作為儀器面板,采用EPP接口,同時在FPGA上開發(fā)控制電路,為后續(xù)開發(fā)留下了空間,同時節(jié)省了成本。本設(shè)計采用地址線16位,數(shù)據(jù)線12位的靜態(tài)RAM作為信號源的波形存儲器,后端采用兩種濾波類型對需要濾波的信號進(jìn)行濾波。啟動信號時軟件需要先將波形數(shù)據(jù)預(yù)存在存儲器中便于調(diào)用,最后得到的結(jié)果基本滿足教學(xué)實驗的需求。 本文結(jié)構(gòu)上首先介紹了直接采用DDS芯片制作信號源的利弊,及作者采用這種設(shè)計的初衷,然后介紹了信號源的整體結(jié)構(gòu),總體模塊。以下章節(jié)首先介紹FPGA內(nèi)部設(shè)計,包括總體結(jié)構(gòu)和幾大部分模塊,包括:時鐘產(chǎn)生電路,相位累加器,數(shù)據(jù)輸入控制電路,濾波器控制電路,信號源啟動控制電路。 然后介紹了其他模塊的設(shè)計,包括存儲器選擇,幅度控制電路的設(shè)計以及濾波器電路的設(shè)計,本設(shè)計的幅度控制采用兩級DA級聯(lián),以及后端電阻分壓網(wǎng)絡(luò)調(diào)節(jié)的方式進(jìn)行設(shè)計,提高了幅度調(diào)節(jié)的范圍。對于濾波器的設(shè)計,依據(jù)不同的信號頻率,分成了4個部分,對于500K以下的信號采用的是二階巴特沃斯有源低通濾波,對于500K以上至5M以下信號采用的五階RC低通濾波器。 在軟件設(shè)計部分,分成兩個部分,對于底層驅(qū)動程序采用以Labwindows/CVI為平臺進(jìn)行開發(fā),利用其編譯和執(zhí)行速度快,并且和LabVIEW能夠很好連接的特性。對于上層控制軟件,采用以LabVIEW為平臺進(jìn)行開發(fā),充分利用其圖化設(shè)計,易于擴展。 論文最后對所做工作進(jìn)行了總結(jié),提出了進(jìn)一步改進(jìn)的方向。

    標(biāo)簽: FPGA DDS 信號源

    上傳時間: 2013-04-24

    上傳用戶:afeiafei309

  • SATA協(xié)議分析及其FPGA實現(xiàn).rar

    并行總線PATA從設(shè)計至今已快20年歷史,如今它的缺陷已經(jīng)嚴(yán)重阻礙了系統(tǒng)性能的進(jìn)一步提高,已被串行ATA(Serial ATA)即SATA總線所取代。SATA作為新一代磁盤接口總線,采用點對點方式進(jìn)行數(shù)據(jù)傳輸,內(nèi)置數(shù)據(jù)/命令校驗單元,支持熱插拔,具有150MB/s(SATA1.0)或300MB/s(SATA2.0)的傳輸速度。目前SATA已在存儲領(lǐng)域廣泛應(yīng)用,但國內(nèi)尚無獨立研發(fā)的面向FPGA的SATAIP CORE,在這樣的條件下設(shè)計面向FPGA應(yīng)用的SATA IP CORE具有重要的意義。 本論文對協(xié)議進(jìn)行了詳細(xì)的分析,建立了SATA IP CORE的層次結(jié)構(gòu),將設(shè)備端SATA IP CORE劃分成應(yīng)用層、傳輸層、鏈路層和物理層;介紹了實現(xiàn)該IPCORE所選擇的開發(fā)工具、開發(fā)語言和所選用的芯片;在此基礎(chǔ)上著重闡述協(xié)議IP CORE的設(shè)計,并對各個部分的設(shè)計予以分別闡述,并編碼實現(xiàn);最后進(jìn)行綜合和測試。 采用FPGA集成硬核RocketIo MGT(RocketIo Multi-Gigabit Transceiver)實現(xiàn)了1.5Gbps的串行傳輸鏈路;設(shè)計滿足協(xié)議需求、適合FPGA設(shè)計的并行結(jié)構(gòu),實現(xiàn)了多狀態(tài)機的協(xié)同工作:在高速設(shè)計中,使用了流水線方法進(jìn)行并行設(shè)計,以提高速度,考慮到系統(tǒng)不同部分復(fù)雜度的不同,設(shè)計采用部分流水線結(jié)構(gòu);采用在線邏輯分析儀Chipscope pro與SATA總線分析儀進(jìn)行片上調(diào)試與測試,使得調(diào)試工作方便快捷、測試數(shù)據(jù)準(zhǔn)確;嚴(yán)格按照SATA1.0a協(xié)議實現(xiàn)了SATA設(shè)備端IP CORE的設(shè)計。 最終測試數(shù)據(jù)表明,本論文設(shè)計的基于FPGA的SATA IP CORE滿足協(xié)議需求。設(shè)計中的SATA IP CORE具有使用方便、集成度高、成本低等優(yōu)點,在固態(tài)電子硬盤SSD(Solid-State Disk)開發(fā)中應(yīng)用本設(shè)計,將使開發(fā)變得方便快捷,更能夠適應(yīng)市場需求。

    標(biāo)簽: SATA FPGA 協(xié)議分析

    上傳時間: 2013-06-21

    上傳用戶:xzt

  • 基于FPGA的B型超聲成像系統(tǒng)的設(shè)計與實現(xiàn).rar

    便攜式B型超聲診斷儀具有無創(chuàng)傷、簡便易行、相對價廉等優(yōu)勢,在臨床中越來越得到廣泛的應(yīng)用。它將超聲波技術(shù)、微電子技術(shù)、計算機技術(shù)、機械設(shè)計與制造及生物醫(yī)學(xué)工程等技術(shù)融合在一起。開展該課題的研究對提高臨床診斷能力和促進(jìn)我國醫(yī)療事業(yè)的發(fā)展具有重要的意義。 便攜式B型超聲診斷儀由人機交互系統(tǒng)、探頭、成像系統(tǒng)、顯示系統(tǒng)構(gòu)成。其基本工作過程是:首先人機交互系統(tǒng)接收到用戶通過鍵盤或鼠標(biāo)發(fā)出的命令,然后成像系統(tǒng)根據(jù)命令控制探頭發(fā)射超聲波,并對回波信號處理、合成圖像,最后通過顯示系統(tǒng)完成圖像的顯示。 成像系統(tǒng)作為便攜式B型超聲診斷儀的核心對圖像質(zhì)量有決定性影響,但以前研制的便攜式B型超聲診斷儀的成像系統(tǒng)在三個方面存在不足:第一、采用的是單片機控制步進(jìn)電機,控制精度不高,導(dǎo)致成像系統(tǒng)采樣不精確;第二、采用的數(shù)字掃描變換算法太粗糙,影響超聲圖像的分辨率;第三、它的CPU多采用的是51系列單片機,測量速度太慢,同時也不便于系統(tǒng)升級和擴展。 針對以上不足,提出了基于FPGA的B型超聲成像系統(tǒng)解決方案,采用Altera公司的EP2C5Q208C8芯片實現(xiàn)了步進(jìn)電機步距角的細(xì)分,使電機旋轉(zhuǎn)更勻速,提高了采樣精度;提出并采用DSTI-ULA算法(Uniform Ladder Algorithm based on Double Sample and Trilinear Interotation)在FPGA內(nèi)實現(xiàn)數(shù)字掃描變換,提高了圖像分辨率;人機交互系統(tǒng)采用S3C2410-AL作為CPU,改善了測量速度和系統(tǒng)的擴展性。 通過對系統(tǒng)硬件電路的設(shè)計、制作,軟件的編寫、調(diào)試,結(jié)果表明,本文所設(shè)計的便攜式B型超聲成像系統(tǒng)圖像分辨率高、測量速度快、體積小、操作方便。本文所設(shè)計的便攜式B型超聲診斷儀可在野外作業(yè)和搶險(諸如地震、抗洪)中發(fā)揮作用,同時也可在鄉(xiāng)村診所中完成對相關(guān)疾病的診斷工作。

    標(biāo)簽: FPGA 超聲成像

    上傳時間: 2013-05-18

    上傳用戶:helmos

  • 基于FPGA的數(shù)字信號處理算法研究與高效實現(xiàn).rar

    現(xiàn)代數(shù)字信號處理對實時性提出了很高的要求,當(dāng)最快的數(shù)字信號處理器(DSP)仍無法達(dá)到速度要求時,唯一的選擇是增加處理器的數(shù)目,或采用客戶定制的門陣列產(chǎn)品。隨著可編程邏輯器件技術(shù)的發(fā)展,具有強大并行處理能力的現(xiàn)場可編程門陣列(FPGA)在成本、性能、體積等方面都顯示出了優(yōu)勢。本文以此為背景,研究了基于FPGA的快速傅立葉變換、數(shù)字濾波、相關(guān)運算等數(shù)字信號處理算法的高效實現(xiàn)。 首先,針對圖像聲納實時性的要求和FPGA片內(nèi)資源的限制,設(shè)計了級聯(lián)和并行遞歸兩種結(jié)構(gòu)的FFT處理器。文中詳細(xì)討論了利用流水線技術(shù)和并行處理技術(shù)提高FFT處理器運算速度的方法,并針對蝶形運算的特點提出了一些優(yōu)化和改進(jìn)措施。 其次,分析了具有相同結(jié)構(gòu)的數(shù)字濾波和相關(guān)運算的特點,采用了有乘法器和無乘法器兩種結(jié)構(gòu)實現(xiàn)乘累加(MAC)運算。無乘法器結(jié)構(gòu)采用分布式算法(DA),將乘法運算轉(zhuǎn)化為FPGA易于實現(xiàn)的查表和移位累加操作,顯著提高了運算效率。此外,還對相關(guān)運算的時域多MAC方法及頻域FFT方法進(jìn)行了研究。 最后,完成了圖像聲納預(yù)處理模塊。在一片EP2S60上實現(xiàn)了對160路信號的接收、濾波、正交變換以及發(fā)送等處理。實驗表明,本論文所有算法均達(dá)到了設(shè)計要求。

    標(biāo)簽: FPGA 數(shù)字信號處理 算法研究

    上傳時間: 2013-06-09

    上傳用戶:zgu489

  • 基于JTAG和FPGA的嵌入式SOC驗證系統(tǒng)研究與設(shè)計.rar

    隨著半導(dǎo)體制造技術(shù)不斷的進(jìn)步,SOC(System On a Chip)是未來IC產(chǎn)業(yè)技術(shù)研究關(guān)注的重點。由于SOC設(shè)計的日趨復(fù)雜化,芯片的面積增大,芯片功能復(fù)雜程度增大,其設(shè)計驗證工作也愈加繁瑣。復(fù)雜ASIC設(shè)計功能驗證已經(jīng)成為整個設(shè)計中最大的瓶頸。 使用FPGA系統(tǒng)對ASIC設(shè)計進(jìn)行功能驗證,就是利用FPGA器件實現(xiàn)用戶待驗證的IC設(shè)計。利用測試向量或通過真實目標(biāo)系統(tǒng)產(chǎn)生激勵,驗證和測試芯片的邏輯功能。通過使用FPGA系統(tǒng),可在ASIC設(shè)計的早期,驗證芯片設(shè)計功能,支持硬件、軟件及整個系統(tǒng)的并行開發(fā),并能檢查硬件和軟件兼容性,同時還可在目標(biāo)系統(tǒng)中同時測試系統(tǒng)中運行的實際軟件。FPGA仿真的突出優(yōu)點是速度快,能夠?qū)崟r仿真用戶設(shè)計所需的對各種輸入激勵。由于一些SOC驗證需要處理大量實時數(shù)據(jù),而FPGA作為硬件系統(tǒng),突出優(yōu)點是速度快,實時性好??梢詫OC軟件調(diào)試系統(tǒng)的開發(fā)和ASIC的開發(fā)同時進(jìn)行。 此設(shè)計以ALTERA公司的FPGA為主體來構(gòu)建驗證系統(tǒng)硬件平臺,在FPGA中通過加入嵌入式軟核處理器NIOS II和定制的JTAG(Joint Test ActionGroup)邏輯來構(gòu)建與PC的調(diào)試驗證數(shù)據(jù)鏈路,并采用定制的JTAG邏輯產(chǎn)生測試向量,通過JTAG控制SOC目標(biāo)系統(tǒng),達(dá)到對SOC內(nèi)部和其他IP(IntellectualProperty)的在線測試與驗證。同時,該驗證平臺還可以支持SOC目標(biāo)系統(tǒng)后續(xù)軟件的開發(fā)和調(diào)試。 本文介紹了芯片驗證系統(tǒng),包括系統(tǒng)的性能、組成、功能以及系統(tǒng)的工作原理;搭建了基于JTAG和FPGA的嵌入式SOC驗證系統(tǒng)的硬件平臺,提出了驗證系統(tǒng)的總體設(shè)計方案,重點對驗證系統(tǒng)的數(shù)據(jù)鏈路的實現(xiàn)進(jìn)行了闡述;詳細(xì)研究了嵌入式軟核處理器NIOS II系統(tǒng),并將定制的JTAG邏輯與處理器NIOS II相結(jié)合,構(gòu)建出調(diào)試與驗證數(shù)據(jù)鏈路;根據(jù)芯片驗證的要求,設(shè)計出軟核處理器NIOS II系統(tǒng)與PC建立數(shù)據(jù)鏈路的軟件系統(tǒng),并完成芯片在線測試與驗證。 本課題的整體任務(wù)主要是利用FPGA和定制的JTAG掃描鏈技術(shù),完成對國產(chǎn)某型DSP芯片的驗證與測試,研究如何構(gòu)建一種通用的SOC芯片驗證平臺,解決SOC驗證系統(tǒng)的可重用性和驗證數(shù)據(jù)發(fā)送、傳輸、采集的實時性、準(zhǔn)確性、可測性問題。本文在SOC驗證系統(tǒng)在芯片驗證與測試應(yīng)用研究領(lǐng)域,有較高的理論和實踐研究價值。

    標(biāo)簽: JTAG FPGA SOC

    上傳時間: 2013-05-25

    上傳用戶:ccsp11

  • 圖像縮放算法的研究與FPGA設(shè)計.rar

    Scaler是平板顯示器件(FPD,F(xiàn)lat Panel Display)中的重要組成部分,它將輸入源圖像信號轉(zhuǎn)換成與顯示屏固定分辨率一致的信號,并控制其顯示在顯示屏上。本文在研究圖像縮放算法和scaler在FPD中工作過程的基礎(chǔ)上,采用自上而下(Top-down)的設(shè)計方法,給出了scaler的設(shè)計及FPGA驗證。該scaler支持不同分辨率圖像的縮放,且縮放模式可調(diào),也可以以IP core的形式應(yīng)用于相關(guān)圖像處理芯片中。 圖像縮放內(nèi)核是scaler的核心部分,它是scaler中的主要運算單元,完成圖像縮放的基本功能,它所采用的核心算法以及所使用的結(jié)構(gòu)設(shè)計決定著縮放性能的優(yōu)劣,也是控制芯片成本的關(guān)鍵。因此,本文從縮放內(nèi)核的結(jié)構(gòu)入手,對scaler的總體結(jié)構(gòu)進(jìn)行了設(shè)計;通過對圖像縮放中常用算法的深入研究提出了一種新的優(yōu)化算法——矩形窗縮放算法,并對其計算進(jìn)行分析和簡化,降低了計算的復(fù)雜度。FPGA設(shè)計中,采用列縮放與行縮放分開處理的結(jié)構(gòu),使用雙口RAM作為兩次縮放間的數(shù)據(jù)緩沖區(qū)。使用這種結(jié)構(gòu)的優(yōu)勢在于:行列縮放可以同時進(jìn)行,數(shù)據(jù)處理的可靠性高、速度快:內(nèi)核結(jié)構(gòu)簡單明了,數(shù)據(jù)緩沖區(qū)大小合適,便于設(shè)計。此外,本文還介紹了其他輔助模塊的設(shè)計,包括DVI接口信號處理模塊、縮放參數(shù)計算與控制模塊以及輸出信號檢測與時序濾波模塊。 本設(shè)計使用Verilog HDL對各模塊進(jìn)行了RTL級描述,并使用Quartus II7.2進(jìn)行了邏輯仿真,最后使用Altera公司的FPGA芯片來進(jìn)行驗證。通過邏輯驗證和系統(tǒng)仿真,證明該scaler的設(shè)計達(dá)到了預(yù)期的目標(biāo)。對于不同分辨率的圖像,均可以在顯示屏上得到穩(wěn)定的顯示。

    標(biāo)簽: FPGA 圖像 法的研究

    上傳時間: 2013-05-30

    上傳用戶:xiaowei314

  • 基于FPGA的電力系統(tǒng)諧波檢測裝置的研制.rar

    隨著社會的發(fā)展,人們對電力需求特別是電能質(zhì)量的要求越來越高。但由于非線性負(fù)荷大量使用,卻帶來了嚴(yán)重的電力諧波污染,給電力系統(tǒng)安全、穩(wěn)定、高效運行帶來嚴(yán)重影響,給供用電設(shè)備造成危害。如何最大限度的減少諧波造成的危害,是目前電力系統(tǒng)領(lǐng)域極為關(guān)注的問題。諧波檢測是諧波研究中重要分支,是解決其它相關(guān)諧波問題的基礎(chǔ)。因此,對諧波的檢測和研究,具有重要的理論意義和實用價值。 目前使用的電力系統(tǒng)諧波檢測裝置,大多基于微處理器設(shè)計。微處理器是作為整個系統(tǒng)的核心,它的性能高低直接決定了產(chǎn)品性能的好壞。而這種微處理器為主體構(gòu)成的應(yīng)用系統(tǒng),存在效率低、資源利用率低、程序指針易受干擾等缺點。由于微電子技術(shù)的發(fā)展,特別是專用集成電路ASIC(ApplicationSpecificIntegratedCircuit)設(shè)計技術(shù)的發(fā)展,使得設(shè)計電力系統(tǒng)諧波檢測專用的集成電路成為可能,同時為諧波檢測裝置的硬件設(shè)計提供了一個新的發(fā)展途徑。本文目標(biāo)就是設(shè)計電力系統(tǒng)諧波檢測專用集成電路,從而可以實現(xiàn)對電力系統(tǒng)諧波的高精度檢測。采用專用集成電路進(jìn)行諧波檢測裝置的硬件設(shè)計,具有體積小,速度快,可靠性高等優(yōu)點,由于應(yīng)用范圍廣,需求量大,電力系統(tǒng)諧波檢測專用集成電路具有很好的應(yīng)用前景。 本文首先介紹了國內(nèi)外現(xiàn)行諧波檢測標(biāo)準(zhǔn),調(diào)研了電力系統(tǒng)諧波檢測的發(fā)展趨勢;隨后根據(jù)裝置的功能需求,特別是依據(jù)其中諧波檢測國標(biāo)參數(shù)的測量算法,為系統(tǒng)選定了基于FPGA的SOPC設(shè)計方案。 本文分析了電力系統(tǒng)諧波檢測專用集成電路的功能模型,對專用集成電路進(jìn)行了模塊劃分。定義了各模塊的功能,并研究了模塊間的連接方式,給出了諧波檢測專用集成電路的并行結(jié)構(gòu)。設(shè)計了基于FPGA的諧波檢測專用集成電路設(shè)計和驗證的硬件平臺。配合專用集成電路的電子設(shè)計自動化(EDA)工具構(gòu)建了智能監(jiān)控單元專用集成電路的開發(fā)環(huán)境。 在進(jìn)行FPGA具體設(shè)計時,根據(jù)待實現(xiàn)功能的不同特點,分為用戶邏輯區(qū)域和Nios處理器模塊兩個部分。用戶邏輯區(qū)域控制A/D轉(zhuǎn)換器進(jìn)行模擬信號的采樣,并對采樣得到的數(shù)字量進(jìn)行諧波分析等運算。然后將結(jié)果存入片內(nèi)的雙口RAM中,等待Nios處理器的訪問。Nios處理器對數(shù)據(jù)處理模塊的結(jié)果進(jìn)一步處理,得到其各自對應(yīng)的最終值,并將結(jié)果通過串行通信接口發(fā)送給上位機。 最后,對設(shè)計實體進(jìn)行了整體的編譯、綜合與優(yōu)化工作,并通過邏輯分析儀對設(shè)計進(jìn)行了驗證。在實驗室條件下,對監(jiān)測指標(biāo)的運算結(jié)果進(jìn)行了實驗測量,實驗結(jié)果表明該監(jiān)測裝置滿足了電力系統(tǒng)諧波檢測的總體要求。

    標(biāo)簽: FPGA 電力系統(tǒng) 諧波檢測

    上傳時間: 2013-04-24

    上傳用戶:yw14205

  • 基于FPGA的噪聲調(diào)頻雷達(dá)信號處理系統(tǒng)的設(shè)計與實現(xiàn).rar

    雷達(dá)截獲接收機、反輻射導(dǎo)彈等電子設(shè)備的使用對軍用雷達(dá)的生存構(gòu)成了嚴(yán)重威脅。因此,雷達(dá)必須避免被敵方電子設(shè)備截獲和干擾。這種形式下噪聲雷達(dá)應(yīng)運而生,其中一種很成熟的便是噪聲調(diào)頻雷達(dá)。上世紀(jì)八十年代,我們課題組成功研制了噪聲調(diào)頻雷達(dá)原理樣機。雖然該雷達(dá)具有十分優(yōu)異的LPI性能,但是限于當(dāng)時的電子技術(shù)水平,該雷達(dá)采用模擬器件實現(xiàn),使得雷達(dá)的體積較大、工作穩(wěn)定性受外界環(huán)境影響大,在小型化、高精度的應(yīng)用領(lǐng)域受到諸多限制。FPGA是上世紀(jì)八十年代發(fā)展起來的數(shù)字技術(shù),具有體積小、精度高、穩(wěn)定性好和速度快等特點。 本文在噪聲雷達(dá)課題組研究的基礎(chǔ)上,設(shè)計實現(xiàn)噪聲調(diào)頻雷達(dá)信號處理系統(tǒng)。內(nèi)容安排如下:第一章介紹噪聲雷達(dá)的研究背景和發(fā)展前景;第二章介紹噪聲調(diào)頻雷達(dá)的原理,證明混頻器輸出信號各態(tài)歷經(jīng)性;第三章介紹FPGA開發(fā)軟硬件環(huán)境;第四章詳細(xì)闡述基于FPGA技術(shù)的噪聲調(diào)頻雷達(dá)信號處理系統(tǒng)設(shè)計和系統(tǒng)中關(guān)鍵模塊的設(shè)計實現(xiàn);第五章對設(shè)計的FPGA信號處理系統(tǒng)進(jìn)行仿真和驗證。最后,第六章對全文進(jìn)行總結(jié),指出了設(shè)計中的不足和須改進(jìn)的地方。

    標(biāo)簽: FPGA 噪聲調(diào)頻 雷達(dá)信號

    上傳時間: 2013-05-21

    上傳用戶:天涯

主站蜘蛛池模板: 库尔勒市| 鲜城| 卓尼县| 武城县| 界首市| 泰州市| 五家渠市| 杨浦区| 平果县| 新宁县| 赤峰市| 宁安市| 玉环县| 丘北县| 莱芜市| 延川县| 项城市| 姚安县| 策勒县| 平泉县| 读书| 四川省| 东安县| 汉源县| 确山县| 三明市| 天门市| 庆云县| 息烽县| 无棣县| 乐东| 宁城县| 综艺| 浙江省| 彰化市| 安顺市| 万宁市| 隆回县| 浮梁县| 汾西县| 囊谦县|