WEBGAME 機器人大戰EBS(無盡的戰爭) 架設方法 WIN2K系列主機 ,最簡單的方法就是 設置一個虛擬目錄 其它就稍微改改 config.cgi的設置,還有餓ebs_sub 1 2 3.cgi的圖片地址就基本好了 WIN2K沒有虛擬目錄的話就除了要做上面的那些以外 還要打開所有文件,搜索類似這樣的 require config.cgi 都改成絕對路徑就行了 UNIX LINUX FREEBSD 系列的話,就要設置屬性了 ebs目錄所有CGI文件設置成 755 所有DAT文件設置成 777 logmiulerebeb 目錄也就是數據目錄,這個要設置成 777 裏面所有文件也是 777 當然,你可以修改這個目錄,最好修改成其他目錄,然後把config.cgi的數據庫目錄改改就可以了, 然後就是改 config.cgi的一些設置,還要改 ebs_sub 1 2 3.cgi的圖片地址了,最後就是,UNIX LINUX系列的大小寫都分的很清楚,這個版本我懶得整理,所以有的是答謝,有的是小寫,自己改改吧.
上傳時間: 2014-01-10
上傳用戶:tuilp1a
利用RTOS機制實現機械系統中的質量,阻尼等...也可利用鍵盤輸入m,k,c,來改變sin波的位移量
上傳時間: 2014-01-11
上傳用戶:13517191407
Hopfield 網——擅長于聯想記憶與解迷路 實現H網聯想記憶的關鍵,是使被記憶的模式樣本對應網絡能量函數的極小值。 設有M個N維記憶模式,通過對網絡N個神經元之間連接權 wij 和N個輸出閾值θj的設計,使得: 這M個記憶模式所對應的網絡狀態正好是網絡能量函數的M個極小值。 比較困難,目前還沒有一個適應任意形式的記憶模式的有效、通用的設計方法。 H網的算法 1)學習模式——決定權重 想要記憶的模式,用-1和1的2值表示 模式:-1,-1,1,-1,1,1,... 一般表示: 則任意兩個神經元j、i間的權重: wij=∑ap(i)ap(j),p=1…p; P:模式的總數 ap(s):第p個模式的第s個要素(-1或1) wij:第j個神經元與第i個神經元間的權重 i = j時,wij=0,即各神經元的輸出不直接返回自身。 2)想起模式: 神經元輸出值的初始化 想起時,一般是未知的輸入。設xi(0)為未知模式的第i個要素(-1或1) 將xi(0)作為相對應的神經元的初始值,其中,0意味t=0。 反復部分:對各神經元,計算: xi (t+1) = f (∑wijxj(t)-θi), j=1…n, j≠i n—神經元總數 f()--Sgn() θi—神經元i發火閾值 反復進行,直到各個神經元的輸出不再變化。
上傳時間: 2015-03-16
上傳用戶:JasonC
系統資源(r1…rm),共有m類,每類數目為r1…rm。隨機產生進程Pi(id,s(j,k),t),0
上傳時間: 2014-01-27
上傳用戶:天誠24
此為編譯原理實驗報告 學習消除文法左遞規算法,了解消除文法左遞規在語法分析中的作用 內含 設計算法 目的 源碼 等等.... 算法:消除左遞歸算法為: (1)把文法G的所有非終結符按任一種順序排列成P1,P2,…Pn 按此順序執行 (2)FOR i:=1 TO n DO BEGIN FOR j:=1 DO 把形如Pi→Pjγ的規則改寫成 Pi→δ1γ δ2γ … δkγ。其中Pj→δ1 δ2 … δk是關于Pj的所有規則; 消除關于Pi規則的直接左遞歸性 END (3)化簡由(2)所得的文法。即去除那些從開始符號出發永遠無法到達的非終結符的 產生規則。
上傳時間: 2015-03-29
上傳用戶:極客
調用過程 CM = Confusion_matrix(train_predicts, train_targets) [combining_predicts, errorrate] = combining_NB(DP, test_targets, CM) DP,三維數組,(i,j,k)為第k個樣本的DP矩陣 targets 為 0 1 2
標簽: combining_predicts Confusion_matrix train_predicts train_targets
上傳時間: 2015-04-04
上傳用戶:it男一枚
求解網絡中的最短路徑。假設某個計算機網絡有n個站點,依次編號為1,2,…,n;有的站點之間有直接的線路連接(即這兩個站點之間沒有其它站點),有的站點之間沒有直接的線路連接。如果用三元組(i,j,f)來表示該網絡中的站點I和站點j之間有直接的線路連接且它們之間的距離為f 當已知該網絡各站點之間的直接連接情況由m個三元組(i1,j1,f1),(i2,j2,f2),…,(im,jm,fm)確定時,要求計算出對于網絡中任意一個站點g(1≤g≤n)到其余各站點的最短距離。
上傳時間: 2013-12-27
上傳用戶:asdkin
模擬退火算法來源于固體退火原理,將固體加溫至充分高,再讓其徐徐冷卻,加溫時,固體內部粒子隨溫升變為無序狀,內能增大,而徐徐冷卻時粒子漸趨有序,在每個溫度都達到平衡態,最后在常溫時達到基態,內能減為最小。根據Metropolis準則,粒子在溫度T時趨于平衡的概率為e-ΔE/(kT),其中E為溫度T時的內能,ΔE為其改變量,k為Boltzmann常數。用固體退火模擬組合優化問題,將內能E模擬為目標函數值f,溫度T演化成控制參數t,即得到解組合優化問題的模擬退火算法:由初始解i和控制參數初值t開始,對當前解重復“產生新解→計算目標函數差→接受或舍棄”的迭代,并逐步衰減t值,算法終止時的當前解即為所得近似最優解,這是基于蒙特卡羅迭代求解法的一種啟發式隨機搜索過程。退火過程由冷卻進度表(Cooling Schedule)控制,包括控制參數的初值t及其衰減因子Δt、每個t值時的迭代次數L和停止條件S。
標簽: 模擬退火算法
上傳時間: 2015-04-24
上傳用戶:R50974
模擬退火算法來源于固體退火原理,將固體加溫至充分高,再讓其徐徐冷卻,加溫時,固體內部粒子隨溫升變為無序狀,內能增大,而徐徐冷卻時粒子漸趨有序,在每個溫度都達到平衡態,最后在常溫時達到基態,內能減為最小。根據Metropolis準則,粒子在溫度T時趨于平衡的概率為e-ΔE/(kT),其中E為溫度T時的內能,ΔE為其改變量,k為Boltzmann常數。用固體退火模擬組合優化問題,將內能E模擬為目標函數值f,溫度T演化成控制參數t,即得到解組合優化問題的模擬退火算法:由初始解i和控制參數初值t開始,對當前解重復“產生新解→計算目標函數差→接受或舍棄”的迭代,并逐步衰減t值,算法終止時的當前解即為所得近似最優解,這是基于蒙特卡羅迭代求解法的一種啟發式隨機搜索過程。退火過程由冷卻進度表(Cooling Schedule)控制,包括控制參數的初值t及其衰減因子Δt、每個t值時的迭代次數L和停止條件S。
標簽: 模擬退火算法
上傳時間: 2015-04-24
上傳用戶:ryb
模擬退火算法來源于固體退火原理,將固體加溫至充分高,再讓其徐徐冷卻,加溫時,固體內部粒子隨溫升變為無序狀,內能增大,而徐徐冷卻時粒子漸趨有序,在每個溫度都達到平衡態,最后在常溫時達到基態,內能減為最小。根據Metropolis準則,粒子在溫度T時趨于平衡的概率為e-ΔE/(kT),其中E為溫度T時的內能,ΔE為其改變量,k為Boltzmann常數。用固體退火模擬組合優化問題,將內能E模擬為目標函數值f,溫度T演化成控制參數t,即得到解組合優化問題的模擬退火算法:由初始解i和控制參數初值t開始,對當前解重復“產生新解→計算目標函數差→接受或舍棄”的迭代,并逐步衰減t值,算法終止時的當前解即為所得近似最優解,這是基于蒙特卡羅迭代求解法的一種啟發式隨機搜索過程。退火過程由冷卻進度表(Cooling Schedule)控制,包括控制參數的初值t及其衰減因子Δt、每個t值時的迭代次數L和停止條件S。
標簽: 模擬退火算法
上傳時間: 2014-12-19
上傳用戶:TRIFCT