世界能源危機(jī)和環(huán)境惡化促使開(kāi)發(fā)利用可再生能源和各種綠色能源以實(shí)現(xiàn)可持續(xù)發(fā)展成為人類當(dāng)前的首要任務(wù)。而隨著太陽(yáng)能電池和電力電子技術(shù)的不斷進(jìn)步,光伏發(fā)電技術(shù)和產(chǎn)業(yè)不僅是當(dāng)今能源的一個(gè)重要補(bǔ)充,更具備成為未來(lái)主要能源的潛力。當(dāng)前,光伏發(fā)電不斷向低成本、高效率和高功率密度方向發(fā)展,太陽(yáng)能光伏利用的主要形式將是并網(wǎng)發(fā)電系統(tǒng)。 @@ 本文主要工作是研究一種光伏發(fā)電并網(wǎng)/獨(dú)立雙模式逆變器的控制策略,這種逆變器不僅可靠性好,而且能提高可再生能源利用率。文章對(duì)光伏發(fā)電應(yīng)用形式和并網(wǎng)逆變器的分類進(jìn)行了闡述,綜合考慮可靠性、工作效率和成本,選擇兩級(jí)全橋結(jié)構(gòu)逆變器作為研究對(duì)象,該拓?fù)浣Y(jié)構(gòu)多應(yīng)用于小型并網(wǎng)逆變器。 @@ 通過(guò)分析比較各種電流控制方式,選擇單極性SPWM控制方式來(lái)產(chǎn)生本文逆變器控制信號(hào)。根據(jù)系統(tǒng)具體情況,在不同的運(yùn)行模式下應(yīng)用不同的控制策略。并網(wǎng)運(yùn)行時(shí),電網(wǎng)決定逆變器的輸出電壓,逆變器看作電流源,采用電流雙閉環(huán)控制輸出電流;獨(dú)立運(yùn)行時(shí),逆變器采用電流電壓閉環(huán)控制輸出電壓。并利用MATLAB Simulink對(duì)兩種模式下工作的單相和三相逆變器進(jìn)行仿真。依據(jù)瞬時(shí)無(wú)功理論,提出一種應(yīng)用在三相電路的軟件鎖相環(huán),仿真結(jié)果顯示該鎖相環(huán)鎖相效果良好。 @@ 雙模式逆變器在兩種模式間切換的時(shí)候,容易對(duì)負(fù)載、電網(wǎng)和電源本身造成沖擊和干擾,需要采取有效的切換控制方法來(lái)減少這種影響。本文詳細(xì)分析了獨(dú)立模式和并網(wǎng)模式之間切換過(guò)程,并對(duì)不同的切換順序進(jìn)行比較,并給出一種兩種模式間無(wú)縫切換的控制方法。利用MATLAB Simulink對(duì)單相和三相逆變器兩種模式間切換過(guò)程進(jìn)行建模仿真,結(jié)果證明了這種模式切換方法的可行性。 @@ 介紹了以DSP(TMS320F2812)為核心的控制電路,并對(duì)部分硬件設(shè)計(jì)進(jìn)行了分析,給出了部分軟件流程圖。 @@關(guān)鍵字:光伏發(fā)電系統(tǒng);逆變器;并網(wǎng)運(yùn)行;獨(dú)立運(yùn)行;無(wú)縫切換
標(biāo)簽: 太陽(yáng)能光伏發(fā)電 雙模式 逆變器
上傳時(shí)間: 2013-04-24
上傳用戶:打算打算
隨著電力電子技術(shù)的發(fā)展,各類電力電子裝置應(yīng)運(yùn)而生,這些產(chǎn)品在出廠前需要根據(jù)不同的需要進(jìn)行相應(yīng)的測(cè)試和校驗(yàn)。傳統(tǒng)的負(fù)載測(cè)試存在著能耗大、靈活性差等諸多缺點(diǎn),已經(jīng)越來(lái)越不能滿足各種測(cè)試場(chǎng)合的要求,特別是一些要求用動(dòng)態(tài)變化的負(fù)載、非線性負(fù)載、具有負(fù)阻特性的負(fù)載以及有源負(fù)載等測(cè)試場(chǎng)合。因此針對(duì)這一問(wèn)題,本文利用電力電子技術(shù)結(jié)合計(jì)算機(jī)技術(shù)、控制技術(shù)等設(shè)計(jì)了一種通用的交流電子負(fù)載模擬裝置,以滿足各種測(cè)試場(chǎng)合的要求。 @@ 交流電子負(fù)載是一種可以模擬真實(shí)負(fù)載的電力電子裝置,它不但可以模擬傳統(tǒng)的線性負(fù)載,也可以模擬各種非線性負(fù)載、有源負(fù)載等其他形式的負(fù)載。目前國(guó)內(nèi)外對(duì)電子負(fù)載的研究還不成熟,有些是使交流電源按照一定的功率放電,但是輸出電流卻與真實(shí)負(fù)載測(cè)試下的電流有較大的差別;而有些雖然能夠準(zhǔn)確控制電源的放電電流取得和真實(shí)負(fù)載一樣的效果,但試驗(yàn)電能完全被消耗掉,造成很大的浪費(fèi)。本文研究的新型交流電子負(fù)載克服了以上電子負(fù)載方案的缺點(diǎn),可以滿足各種試驗(yàn)場(chǎng)合的測(cè)試需求,能夠在很大程度上減少能量浪費(fèi),豐富試驗(yàn)樣式且節(jié)約試驗(yàn)成本。 @@ 本文分析了能饋式交流電子負(fù)載的模擬原理,確定了采用中間直流環(huán)節(jié)的交-直-交主電路結(jié)構(gòu),其一端接待測(cè)交流電源,另一端接低壓交流電網(wǎng)。前級(jí)負(fù)載模擬環(huán)節(jié)和后級(jí)能量回饋環(huán)節(jié)均采用可四象限運(yùn)行的電壓型PWM(Pulse Width Modulation)變換器。負(fù)載模擬環(huán)節(jié)直接與待測(cè)電源連接,采用電流滯環(huán)瞬時(shí)值比較方式,使電源輸出的實(shí)際電流信號(hào)準(zhǔn)確、快速的跟蹤其指令電流信號(hào)值,使得電子負(fù)載對(duì)待測(cè)電源呈現(xiàn)設(shè)定的負(fù)載形式,完成電子負(fù)載的模擬功能;能量回饋環(huán)節(jié)與電網(wǎng)連接,通過(guò)控制輸出電流與電網(wǎng)電壓同頻、同相位,實(shí)現(xiàn)試驗(yàn)電能的單位功率因數(shù)回饋電網(wǎng)的目的,變換器的控制采用常規(guī)的雙閉環(huán)控制方式,電流內(nèi)環(huán)控制實(shí)際電流跟蹤指令值的變化,電壓外環(huán)通過(guò)控制輸出電流的大小使直流側(cè)母線電壓穩(wěn)定為設(shè)定指令值。 @@ 電子負(fù)載系統(tǒng)在負(fù)載模擬部分通過(guò)人機(jī)接口設(shè)定具體負(fù)載形式和負(fù)載屬性,為了更加準(zhǔn)確快速的得到電流指令信號(hào)值,文中采用更加直接的數(shù)值計(jì)算方 法,由數(shù)字信號(hào)處理器實(shí)時(shí)計(jì)算出該給定負(fù)載模式下的指令電流值。使用交流小信號(hào)分析法得到了系統(tǒng)的頻域方塊圖,并對(duì)主電路元件參數(shù)以及調(diào)節(jié)器進(jìn)行了優(yōu)化設(shè)計(jì)。針對(duì)大功率開(kāi)關(guān)管開(kāi)關(guān)頻率存在的限制,本文提出了幾種提高電流跟蹤精度的改進(jìn)方法,取得了良好的效果。整個(gè)系統(tǒng)在PSIM平臺(tái)上進(jìn)行了不同工作模式下的仿真,仿真結(jié)果表明方案切實(shí)可行。最后依據(jù)仿真方案設(shè)計(jì)基于TMS320F2812的控制系統(tǒng)和功率電路,使用PROTEL軟件進(jìn)行了原理圖的繪制。@@關(guān)鍵詞:電子負(fù)載;能量回饋;電壓型變換器;滯環(huán)PWM電流控制;雙閉環(huán);PWM整流器
上傳時(shí)間: 2013-05-26
上傳用戶:saharawalker
隨著“節(jié)能環(huán)保”概念的提出,以解決電力緊張,環(huán)境污染等問(wèn)題為目的的新能源利用方案得到迅速的推廣,使得分布式發(fā)電備受關(guān)注,即將成為世界各國(guó)重要的發(fā)電形式。帶有分布式電源的配電網(wǎng)及電力電子裝置的大量應(yīng)用致使電能質(zhì)量下降,如何將分布式發(fā)電系統(tǒng)的能量回饋至電網(wǎng)的同時(shí)有效改善電能質(zhì)量是一個(gè)重要的問(wèn)題,因此在分布式發(fā)電系統(tǒng)中起電能變換作用的逆變器成為研究的一個(gè)熱點(diǎn)。本篇主要以電壓型并網(wǎng)逆變器為研究對(duì)象,對(duì)并網(wǎng)逆變器的拓?fù)浣Y(jié)構(gòu)、控制策略、參數(shù)的選擇、并網(wǎng)實(shí)驗(yàn)等方面作出了詳細(xì)的分析和研究。 首先根據(jù)帶有分布式發(fā)電的配電網(wǎng)的特點(diǎn)提出一種新的諧波治理思路,即將改善電能質(zhì)量的有源濾波技術(shù)結(jié)合到分布式逆變電源中,設(shè)計(jì)一種新型的多功能并網(wǎng)逆變器。用開(kāi)關(guān)函數(shù)法建立了并網(wǎng)逆變器小信號(hào)數(shù)學(xué)模型,確定了以PI閉環(huán)調(diào)節(jié)為核心的復(fù)合控制策略,同時(shí)為了使輸出電流控制達(dá)到更好的效果,采用電網(wǎng)電壓前饋補(bǔ)償方法抵消電網(wǎng)電壓擾動(dòng)對(duì)并網(wǎng)電流的影響;基于瞬時(shí)無(wú)功功率的id-iq諧波電流檢測(cè)算法能精確檢測(cè)和分離所需要的有功和諧波分量;基于DSP的軟件鎖相控制算法能實(shí)現(xiàn)并網(wǎng)電流與電網(wǎng)電壓同頻同相。 其次對(duì)并網(wǎng)逆變器控制系統(tǒng)的軟硬件進(jìn)行了分塊設(shè)計(jì):對(duì)逆變系統(tǒng)的A/D轉(zhuǎn)換電路、逆變驅(qū)動(dòng)電路、PWM信號(hào)發(fā)生電路等電路進(jìn)行了詳細(xì)地分析和說(shuō)明。利用DSP主控芯片TMS320LF2407A內(nèi)部的SCI異步串行通信接口實(shí)現(xiàn)了逆變器的人機(jī)交互功能,利用其內(nèi)嵌的CAN控制模塊實(shí)現(xiàn)了逆變器的并機(jī)通信功能;同時(shí)在TI DSP2000的運(yùn)行環(huán)境下給出控制系統(tǒng)的主程序和周期中斷子程序流程。 最后開(kāi)發(fā)了以功率器件IPM構(gòu)成的三相PWM變流橋主電路的多功能逆變電源實(shí)驗(yàn)平臺(tái)和相關(guān)配套輔助電路,完成了逆變電源的輸出有功功率及消除諧波的實(shí)驗(yàn)并給出了裝置樣機(jī)的實(shí)物圖以及實(shí)驗(yàn)波形圖。驗(yàn)證了逆變器工作原理分析的正確性和系統(tǒng)設(shè)計(jì)思路的可行性。 本文所做工作拓寬了帶有分布式發(fā)電的配電網(wǎng)諧波治理的思路,對(duì)推動(dòng)我國(guó)節(jié)能供電、新能源的利用以及改善電網(wǎng)電能質(zhì)量等方面具有一定的理論意義和較強(qiáng)的實(shí)用價(jià)值。
標(biāo)簽: 諧波抑制 分布式發(fā)電 并網(wǎng)逆變器
上傳時(shí)間: 2013-06-06
上傳用戶:amandacool
隨著電力電子技術(shù)的發(fā)展,高壓換流設(shè)備在工業(yè)應(yīng)用中日益廣泛。其核心元件晶閘管(SCR)的電壓與電流越來(lái)越高(已達(dá)到10KV/10KA以上),應(yīng)用場(chǎng)合要求也越來(lái)越高。在國(guó)際上,晶閘管的光控技術(shù)發(fā)展日益成熟。根據(jù)對(duì)國(guó)內(nèi)晶閘管技術(shù)發(fā)展前景和需求的展望,本文采用自供電驅(qū)動(dòng)技術(shù)與光控技術(shù)相結(jié)合,研發(fā)光控自供電晶閘管驅(qū)動(dòng)控制板,然后與晶閘管本體相結(jié)合即形成光控晶閘管工程化實(shí)現(xiàn)模型,其可作為光控晶閘管的替代技術(shù)。 在工程應(yīng)用中,光控晶閘管的典型應(yīng)用場(chǎng)合為四象限高壓變頻器和國(guó)家大型直流輸變電系統(tǒng)等。隨著國(guó)家節(jié)能工程的實(shí)施,高壓變頻器的應(yīng)用范圍越來(lái)越廣泛,已成為工業(yè)節(jié)能中的重要環(huán)節(jié)。高壓直流換流系統(tǒng)難度大,技術(shù)復(fù)雜,要求高,本論文研究的光控晶閘管替代技術(shù)只作為其儲(chǔ)備技術(shù)之一。本論文以電流源型高壓變頻器作為該光控晶閘管替代技術(shù)的應(yīng)用背景重點(diǎn)闡述。 電流源型高壓變頻器為了提高單機(jī)容量,通常是數(shù)個(gè)SCR串聯(lián)使用。隨著系統(tǒng)容量越來(lái)越大,裝置對(duì)高壓開(kāi)關(guān)器件的要求也越來(lái)越高。如果一組串聯(lián)SCR中某一個(gè)SCR該導(dǎo)通時(shí)沒(méi)有導(dǎo)通,那么加在該組SCR上的電壓都將加到該SCR上形成過(guò)電壓,造成該器件的擊穿損壞,甚至于一組串聯(lián)SCR都被燒壞。為了克服上述問(wèn)題,保證高壓變頻器中串聯(lián)晶閘管能夠安全可靠的工作,提高系統(tǒng)可靠性,有必要為晶閘管配備后備驅(qū)動(dòng)系統(tǒng)。本文提出了給SCR驅(qū)動(dòng)電路增設(shè)自供電驅(qū)動(dòng)系統(tǒng)——SPDS (Self—Powered Drive System)的解決辦法。SPDS基本功能是通過(guò)高位取能電路利用RC緩沖電路中的能量為監(jiān)測(cè)電路和后備觸發(fā)電路提供正常工作所需要的能量。它的優(yōu)點(diǎn)是由于緩沖電路與晶閘管同電位,自供電驅(qū)動(dòng)系統(tǒng)要求的電壓隔離水平可以從幾千伏降低到幾百伏,節(jié)省了高壓隔離變壓器,節(jié)省了成本和體積,提高了系統(tǒng)可靠性。國(guó)外對(duì)相關(guān)內(nèi)容已經(jīng)有了深入研究,并將其應(yīng)用在高壓變頻器產(chǎn)品中。在國(guó)內(nèi),目前還沒(méi)有查到相關(guān)文獻(xiàn)。本文為基于晶閘管的電流源型高壓變頻器設(shè)計(jì)了一種高壓晶閘管自供電驅(qū)動(dòng)系統(tǒng),填補(bǔ)了國(guó)內(nèi)空白,為自供電驅(qū)動(dòng)系統(tǒng)的推廣應(yīng)用和其他高壓開(kāi)關(guān)器件自供電驅(qū)動(dòng)系統(tǒng)的研制提供了參考。 本文詳細(xì)介紹了串聯(lián)高壓晶閘管驅(qū)動(dòng)系統(tǒng)的要求和RC緩沖電路的工作特 點(diǎn),進(jìn)而提出了SPDS的工作原理和具體實(shí)現(xiàn)方式,闡述了SPDS各部分組成及其功能。SPDS的核心技術(shù)是取能回路和觸發(fā)方式的設(shè)計(jì)。本文在比較各種高壓取能方式和觸發(fā)方式優(yōu)缺點(diǎn)的基礎(chǔ)上,選擇采用RC緩沖取能方式和光纖觸發(fā)方式。 論文基于Multisim10仿真軟件,結(jié)合高壓晶閘管自供電驅(qū)動(dòng)系統(tǒng)取能電路的原理,對(duì)高壓晶閘管自供電驅(qū)動(dòng)系統(tǒng)的核心部分——SPDS取能電路進(jìn)行了仿真。通過(guò)搭建帶SPDS取能電路的單相晶閘管仿真電路和電流源型高壓變頻器前側(cè)變流電路的仿真模型,詳細(xì)討論了影響RC取能回路正常工作的各種因素。同時(shí),通過(guò)設(shè)定仿真電路的參數(shù),分析了其工作狀況。根據(jù)得到的仿真波形圖,證明了高壓晶閘管自供電驅(qū)動(dòng)系統(tǒng)可以達(dá)到有效觸發(fā)晶閘管導(dǎo)通的設(shè)計(jì)目標(biāo),具有可行性。 為考察SPDS的實(shí)際工作性能,本文搭建了簡(jiǎn)易的SPDS低壓硬件實(shí)驗(yàn)平臺(tái),為其高壓條件下的工程化應(yīng)用打好了基礎(chǔ)。 在論文的最后,對(duì)高壓晶閘管自供電驅(qū)動(dòng)系統(tǒng)的發(fā)展方向進(jìn)行了展望。 關(guān)鍵詞:高壓變頻器;晶閘管驅(qū)動(dòng);自供電系統(tǒng);高壓換流;光控晶閘管
上傳時(shí)間: 2013-05-26
上傳用戶:riiqg1989
異步電動(dòng)機(jī)的軟起動(dòng)研究,是一項(xiàng)重要的研究課題。本文以分級(jí)變頻理論為基礎(chǔ),利用數(shù)學(xué)分析的方法對(duì)分級(jí)變頻的子頻率系統(tǒng)進(jìn)行了深入的研究,總結(jié)了各級(jí)子頻率系統(tǒng)的電壓相序情況以及最優(yōu)的觸發(fā)角度。并且對(duì)傳統(tǒng)異步電動(dòng)機(jī)軟起動(dòng)器的主電路結(jié)構(gòu)進(jìn)行了改進(jìn),提出了從較低頻率開(kāi)始分五級(jí)起動(dòng)的分級(jí)變頻調(diào)壓軟起動(dòng)形式,而且各級(jí)子頻率的起動(dòng)都能實(shí)現(xiàn)最優(yōu)的正序電壓組合,保證了起動(dòng)轉(zhuǎn)矩的最大化。通過(guò)對(duì)分級(jí)變頻調(diào)壓軟起動(dòng)形式的建模和仿真試驗(yàn),證明了此方法可以在降低起動(dòng)電流的同時(shí)實(shí)現(xiàn)異步電機(jī)的高轉(zhuǎn)矩起動(dòng),驗(yàn)證了此方法的有效性和可行性。基于以上研究的成果,本文介紹了以TMS320LF2407ADSP芯片為核心的軟起動(dòng)軟硬件設(shè)計(jì)方法。最后對(duì)本課題的進(jìn)一步研究提出了展望。
標(biāo)簽: 分級(jí) 仿真研究 頻調(diào)
上傳時(shí)間: 2013-04-24
上傳用戶:assss
由于下一代微處理器的工作電壓越來(lái)越低,所需電流越來(lái)越大,現(xiàn)有的5V、12V輸入的電壓調(diào)節(jié)模塊(VRM)已經(jīng)不能滿足它的要求了,因此把VRM的輸入母線電壓提高到48V是必然的趨勢(shì)。這樣做能夠減小輸入電流從而使得母線損耗減小,有利于效率提高,同時(shí)可以大大減小輸入濾波器體積。 本課題首先分析了VRM的發(fā)展現(xiàn)狀和常用拓?fù)洌约拔磥?lái)的發(fā)展趨勢(shì),并在此基礎(chǔ)上介紹了級(jí)聯(lián)式流饋推挽DC/DC變換器的概念。接著,具體分析了Buck與推挽級(jí)聯(lián)式流饋DC/DC變換器、雙通道交錯(cuò)并聯(lián)型Buck與推挽級(jí)聯(lián)式流饋DC/DC變換器的原理和工作過(guò)程。再接著,分別介紹了Buck與推挽級(jí)聯(lián)式流饋DC/DC變換器、雙通道交錯(cuò)并聯(lián)型Buck與推挽級(jí)聯(lián)式流饋DC/DC變換器及其控制同路的建模和設(shè)計(jì)方法,并給出設(shè)計(jì)實(shí)例。最后,分別用這兩種拓?fù)浣Y(jié)構(gòu)制作了兩臺(tái)48V輸入、3.3V/10A輸出的樣機(jī),并對(duì)兩者進(jìn)行了一定的實(shí)驗(yàn)比較研究,以驗(yàn)證設(shè)計(jì)的有效性。
標(biāo)簽: DCDC 級(jí)聯(lián) 變換器
上傳時(shí)間: 2013-07-29
上傳用戶:gxrui1991
為了解決現(xiàn)有環(huán)形線圈車檢器在工程應(yīng)用中出現(xiàn)的誤檢問(wèn)題,尤其是對(duì)同一輛大車的多次誤觸發(fā)問(wèn)題,本文深入研究導(dǎo)致誤檢現(xiàn)象的具體原因,并在這基礎(chǔ)上提出了一套軟硬件的解決方法,以減少誤觸發(fā)現(xiàn)象,提高檢測(cè)的準(zhǔn)確率。 為了方便測(cè)量與調(diào)試,本文設(shè)計(jì)了一個(gè)PC端軟件。它與實(shí)驗(yàn)室原有的頻率采集工具一塊配合工作,能實(shí)時(shí)而直觀地察看車檢器的工作狀況,從而有利于實(shí)驗(yàn)數(shù)據(jù)的采集與問(wèn)題分析。通過(guò)實(shí)驗(yàn)分析,本文總結(jié)了誤檢現(xiàn)象的若干情形,以及導(dǎo)致誤檢問(wèn)題的主要原因。 針對(duì)上述分析的發(fā)現(xiàn)—車檢器采用的單一閾值法不能適應(yīng)復(fù)雜的應(yīng)用環(huán)境,本文對(duì)檢測(cè)算法作了改進(jìn):對(duì)車輛到達(dá)的檢測(cè),仍采用單一閾值法;對(duì)車輛離開(kāi)的檢測(cè),則采用平坦性判定法。后者利用了在車輛離開(kāi)時(shí),線圈頻率從非平坦變?yōu)槠教惯@一特征。它有簡(jiǎn)單、易移植和防誤檢的特點(diǎn)。 為了從應(yīng)用層面解決問(wèn)題,本文設(shè)計(jì)了一種基于改進(jìn)算法的車檢器。與同類車檢器相比,它除了集成上述車檢算法外,還提供一個(gè)RS-232的測(cè)試端口,按一定的數(shù)據(jù)協(xié)議與PC端的診斷軟件通訊,能夠幫助現(xiàn)場(chǎng)測(cè)試工作的開(kāi)展。 本文還利用了新車檢器做了兩組的實(shí)驗(yàn):實(shí)驗(yàn)室環(huán)境與高速公路車輛檢測(cè)現(xiàn)場(chǎng)環(huán)境下的實(shí)驗(yàn)。第一組驗(yàn)證了改進(jìn)算法的防誤檢性能,并計(jì)算它的檢測(cè)延遲。其中檢測(cè)延遲的計(jì)算,有助于協(xié)調(diào)車輛檢測(cè)系統(tǒng)中線圈、車檢器與攝像頭三者間的工作。第二組驗(yàn)證了新車檢器的檢測(cè)性能,包括識(shí)別和延遲兩方面內(nèi)容。兩組實(shí)驗(yàn)結(jié)果都證實(shí)了改進(jìn)算法的實(shí)用價(jià)值。
標(biāo)簽: 環(huán)形 技術(shù)研究 線圈
上傳時(shí)間: 2013-06-16
上傳用戶:1406054127
諧振變換器相對(duì)硬開(kāi)關(guān)PWM變換器,具有開(kāi)關(guān)頻率高、關(guān)斷損耗小、效率高、重量輕、體積小、EMI噪聲小、開(kāi)關(guān)應(yīng)力小等優(yōu)點(diǎn)。而LLC諧振變換器具有原邊開(kāi)關(guān)管易實(shí)現(xiàn)全負(fù)載范圍內(nèi)的ZVS,次級(jí)二極管易實(shí)現(xiàn)ZCS諧振電感和變壓器易實(shí)現(xiàn)磁性元件的集成,以及輸入電壓范圍寬等優(yōu)點(diǎn),因而得到了廣泛的關(guān)注。 本文對(duì)諧振變換器的基本分類和各種諧振變換器的優(yōu)缺點(diǎn)進(jìn)行了比較和總結(jié),并與傳統(tǒng)PWM變換器進(jìn)行了對(duì)比,總結(jié)出LLC諧振變換器的主要優(yōu)點(diǎn)。并以400W LLC諧振變換器為目標(biāo)設(shè)計(jì),LLC前級(jí)使用APFC電路,后一級(jí)是LLC諧振變換器。 首先,基于FHA(基波分析法)的方法對(duì)LLC諧振變換器進(jìn)了穩(wěn)態(tài)電路的分析,并詳細(xì)闡述了LLC諧振變換器在各個(gè)開(kāi)關(guān)頻率范圍內(nèi)的工作原理和工作特性。隨后,文章詳細(xì)比較了LLC諧振變換器與傳統(tǒng)的諧振變換器和半橋PWM變換器不同之處。 然后,文章分別采用分段線性法和擴(kuò)展描述函數(shù)法建立了LLC諧振變換器的小信號(hào)模型。由于分段線性法建立的小信號(hào)模型僅考慮了LLC諧振變換器工作在滿負(fù)載的情況下,為了建立更具一般性的模型,論文又采用了擴(kuò)展描述函數(shù)法建模,用以指導(dǎo)控制環(huán)路的設(shè)計(jì)。 接著,論文對(duì)整個(gè)系統(tǒng)進(jìn)行了綜合設(shè)計(jì)。文章給出了APFC部分的主電路和控制補(bǔ)償回路的具體設(shè)計(jì);同時(shí),也做出了LLC諧振變換器主電路的具體設(shè)計(jì),而LLC諧振變換器控制回路的設(shè)計(jì),仍需要更深一步的研究,并需提出一種切實(shí)可行的設(shè)計(jì)方法。 最后,采用Pspiee軟件建立了仿真模型。仿真結(jié)果得出LLC諧振變換器能在負(fù)載和輸入電壓變化范圍都很大的情況下實(shí)現(xiàn)輸出電壓的穩(wěn)定調(diào)節(jié),并能實(shí)現(xiàn)場(chǎng)效應(yīng)管和二極管的軟開(kāi)關(guān),驗(yàn)證了理論分析的正確性;由于實(shí)驗(yàn)條件的限制,制作的實(shí)驗(yàn)電路板處于調(diào)試之中,希望進(jìn)一步驗(yàn)證理論設(shè)計(jì)的正確性。
上傳時(shí)間: 2013-04-24
上傳用戶:DanXu
當(dāng)今世界,環(huán)境污染嚴(yán)重,能源出現(xiàn)危機(jī),機(jī)動(dòng)車輛排氣污染已占城市大氣污染的很大比重,電動(dòng)汽車作為無(wú)污染交通工具,在市場(chǎng)上具有很大的優(yōu)越性。而電動(dòng)汽車充電技術(shù)也在不斷發(fā)展,不斷優(yōu)化。奧運(yùn)臨近,我國(guó)為把2008年北京奧運(yùn)會(huì)辦成真正的綠色奧運(yùn),將在奧運(yùn)村及北京很多范圍內(nèi)使用電動(dòng)汽車。本論文針對(duì)2008北京奧運(yùn)會(huì)用電動(dòng)汽車,對(duì)其充電電源進(jìn)行了系統(tǒng)的研究設(shè)計(jì)。本文提出了以零電壓零電流(ZVZCS)全橋軟開(kāi)關(guān)變換器為主拓?fù)涞某潆婋娫聪到y(tǒng),實(shí)現(xiàn)了較高功率因數(shù)與高效率的充電設(shè)備。文中首先總結(jié)了電動(dòng)汽車充電電源的研究現(xiàn)狀和充電控制策略,進(jìn)行了多種全橋軟開(kāi)關(guān)拓?fù)浔容^,最終選擇采用副邊簡(jiǎn)單輔助電路的ZVZCS變換器拓?fù)洌撏負(fù)涫褂靡粋€(gè)電容和兩個(gè)二極管構(gòu)成副邊輔助電路,無(wú)需有損元件和有源開(kāi)關(guān)器件,輔助電路構(gòu)成簡(jiǎn)單,控制方法簡(jiǎn)單,能很好的實(shí)現(xiàn)主開(kāi)關(guān)器件的ZVZCS,也能嵌位副邊整流電壓。以可靠性為大前提,對(duì)充電電源進(jìn)行了參數(shù)設(shè)計(jì)。另外,本文針對(duì)輕載情況下,超前臂不能實(shí)現(xiàn)零電壓開(kāi)通的問(wèn)題,對(duì)變換器進(jìn)行了改進(jìn),實(shí)現(xiàn)了全負(fù)載范圍的軟開(kāi)關(guān)。實(shí)驗(yàn)結(jié)果驗(yàn)證了該拓?fù)鋺?yīng)用于電動(dòng)汽車充電電源的可行性。
標(biāo)簽: 軟開(kāi)關(guān) 全橋變換器 電動(dòng)汽車充電
上傳時(shí)間: 2013-07-13
上傳用戶:wdq1111
三相異步電動(dòng)機(jī)結(jié)構(gòu)簡(jiǎn)單、價(jià)格便宜以及維修方便等優(yōu)點(diǎn),被廣泛應(yīng)用于工農(nóng)業(yè)生產(chǎn)和日常生活等領(lǐng)域。隨著各行各業(yè)中生產(chǎn)機(jī)械的不斷更新和發(fā)展,其中對(duì)電動(dòng)機(jī)的起動(dòng)性能要求越來(lái)越高。傳統(tǒng)的電機(jī)起動(dòng)方式其局限性,不能有效減少起動(dòng)時(shí)對(duì)電網(wǎng)的大電流沖擊,已越來(lái)越不能適應(yīng)現(xiàn)代生產(chǎn)發(fā)展的要求。針對(duì)上述問(wèn)題,本文提出了一種以TMS320LF2407 DSP為核心的高性能數(shù)字式電機(jī)軟起動(dòng)器。相比于傳統(tǒng)的起動(dòng)器,它能顯著的改善電機(jī)的起動(dòng)性能。 由于軟起動(dòng)器所具有的優(yōu)點(diǎn)及其它控制設(shè)備無(wú)法比擬的性價(jià)比,使得軟起動(dòng)器的應(yīng)用前景十分廣闊。加上現(xiàn)在國(guó)內(nèi)電力供應(yīng)緊張,軟起動(dòng)器在節(jié)能方面有突出的表現(xiàn)。因此軟起動(dòng)器擁有十分廣闊的市場(chǎng)。但是在國(guó)內(nèi)軟起動(dòng)器市場(chǎng),以國(guó)外產(chǎn)品居多。國(guó)外產(chǎn)品質(zhì)量高,但是價(jià)格昂貴,性價(jià)比不高,在國(guó)內(nèi)徹底普及有困難。針對(duì)該現(xiàn)狀,本文設(shè)計(jì)出一種以DSP-TMS320LF2407為核心低價(jià)格,高性能的異步電動(dòng)機(jī)軟起動(dòng)器。 本軟起動(dòng)器采用品閘管調(diào)壓方式,采用模塊化設(shè)計(jì)思想,通過(guò)改變晶閘管的觸發(fā)角來(lái)實(shí)現(xiàn)對(duì)定子兩端的電壓的調(diào)節(jié)。從而實(shí)現(xiàn)了異步電動(dòng)機(jī)電壓斜坡起動(dòng)、限流起動(dòng)、軟停車等功能。 本文利用MATLAB搭建了軟起動(dòng)器系統(tǒng)的仿真模型,對(duì)軟起動(dòng)的控制方式進(jìn)行了仿真研究。仿真結(jié)果表明該軟起動(dòng)器系統(tǒng)可以有效地減小異步電動(dòng)機(jī)起動(dòng)時(shí)對(duì)電網(wǎng)的沖擊。本文同時(shí)也闡述了晶閘管調(diào)壓電路及軟起動(dòng)器主電路的工作原理、軟起動(dòng)器的硬件結(jié)構(gòu)和功能以及軟件設(shè)計(jì)。該軟起動(dòng)器操作方便簡(jiǎn)單,智能化程度高,能夠及時(shí)跟隨電機(jī)負(fù)載的變化,使電機(jī)順利起動(dòng)。經(jīng)過(guò)實(shí)驗(yàn)調(diào)試,基本上達(dá)到了改善鼠籠式異步電動(dòng)機(jī)起動(dòng)性能的要求,在保障降低異步電動(dòng)機(jī)起動(dòng)電流的前提下,使電機(jī)能夠平穩(wěn)可靠起動(dòng)。
標(biāo)簽: DSP 三相異步電動(dòng)機(jī) 軟起動(dòng)器
上傳時(shí)間: 2013-04-24
上傳用戶:lht618
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1