船舶自動(dòng)操舵儀又稱自動(dòng)舵,用來(lái)保持船舶在給定航向或航跡上航行,是船舶操縱的關(guān)鍵設(shè)備。船舶自動(dòng)舵尚沒(méi)有專用的故障診斷系統(tǒng),當(dāng)前的維修方法不能滿足快速保障和應(yīng)急保障的需要。本文結(jié)合某型自動(dòng)舵微機(jī)通道故障診斷科研項(xiàng)目,重點(diǎn)論述某型自動(dòng)舵數(shù)字控制系統(tǒng)的故障診斷設(shè)計(jì)與實(shí)現(xiàn),研究了基于模糊推理的船舶自動(dòng)舵故障診斷專家系統(tǒng)和基于支持向量機(jī)的船舶自動(dòng)舵模擬電路故障診斷方法。 對(duì)某型自動(dòng)舵充分調(diào)研,在了解系統(tǒng)軟、硬件的總體技術(shù)要求和指標(biāo)的基礎(chǔ)上,建立檢測(cè)對(duì)象的數(shù)學(xué)模型和物理模型。確定故障檢測(cè)的對(duì)象特點(diǎn),為系統(tǒng)故障仿真、參數(shù)辨識(shí)做好準(zhǔn)備,并為后續(xù)的故障檢測(cè)、診斷方法研究提供了參考。 結(jié)合某型自動(dòng)舵數(shù)字控制系統(tǒng)實(shí)際情況,確定其故障診斷系統(tǒng)采用分層遞階結(jié)構(gòu)。系統(tǒng)底層為基于嵌入式微處理器的信號(hào)檢測(cè)單元,負(fù)責(zé)獲取微機(jī)通道的總線控制權(quán)以及信號(hào)預(yù)處理;系統(tǒng)中間層為通訊子系統(tǒng),負(fù)責(zé)對(duì)底層多個(gè)檢測(cè)單元信息集中傳送;系統(tǒng)頂層為故障診斷和顯示子系統(tǒng),負(fù)責(zé)對(duì)微機(jī)通道的信息進(jìn)行綜合評(píng)價(jià),得出最終診斷結(jié)論。 船舶自動(dòng)舵系統(tǒng)結(jié)構(gòu)繁雜,很多故障很難用精確的公式將它表示出來(lái),提出了基于模糊推理的船舶自動(dòng)舵故障診斷專家系統(tǒng),提高了自動(dòng)舵故障診斷準(zhǔn)確性。該系統(tǒng)將模糊數(shù)學(xué)、模糊診斷原理及專家經(jīng)驗(yàn)相結(jié)合,采用模糊產(chǎn)生式知識(shí)表示法,確定模糊關(guān)系矩陣及語(yǔ)義距離,設(shè)計(jì)相關(guān)硬件平臺(tái),實(shí)現(xiàn)了船舶自動(dòng)舵故障診斷模糊專家系統(tǒng)的各個(gè)功能模塊。 為解決船舶自動(dòng)舵模擬電路故障診斷復(fù)雜多樣難于辨識(shí)的問(wèn)題,提出了基于支持向量機(jī)的故障診斷方法。該方法通過(guò)電路仿真分析,給出了各故障模式下電壓頻率響應(yīng),提取具有代表性的故障特征,建立了以支持向量機(jī)為基礎(chǔ)的模擬電路故障診斷模型。實(shí)驗(yàn)結(jié)果證明,該方法可有效診斷模擬電路中的元件故障,且對(duì)于元件容差引起的故障診斷模型的不確定性具有較強(qiáng)的魯棒性,滿足非線性電路的故障診斷要求。
標(biāo)簽: 自動(dòng) 故障診斷 系統(tǒng)設(shè)計(jì)
上傳時(shí)間: 2013-04-24
上傳用戶:evil
嵌入式人臉識(shí)別系統(tǒng)建立在嵌入式操作系統(tǒng)和嵌入式硬件系統(tǒng)平臺(tái)之上,具有起點(diǎn)高、概念新、實(shí)用性強(qiáng)等特點(diǎn)。它涉及嵌入式硬件設(shè)計(jì)、嵌入式操作系統(tǒng)應(yīng)用開(kāi)發(fā)、人臉識(shí)別算法等領(lǐng)域的研究;嵌入式人臉識(shí)別系統(tǒng)攜帶方便、安裝快捷、機(jī)動(dòng)性強(qiáng),可廣泛應(yīng)用于各類門(mén)禁系統(tǒng)、戶外機(jī)動(dòng)布控的實(shí)時(shí)監(jiān)測(cè)等特殊場(chǎng)合,因此對(duì)嵌入式人臉識(shí)別的研究工作具有突出的理論意義和廣泛的應(yīng)用前景。 本文是上海市經(jīng)委創(chuàng)新研究項(xiàng)目《射頻識(shí)別RFID系統(tǒng)-自動(dòng)識(shí)別和記錄人群的身份》(編號(hào):04-11-2)與上海市科委AM基金項(xiàng)目《基于ARM和RFID芯片的自組織安全監(jiān)控系統(tǒng)的研制》(編號(hào):0512)的主要研究?jī)?nèi)容之一。論文從構(gòu)建自動(dòng)人臉識(shí)別系統(tǒng)所需解決的若干關(guān)鍵問(wèn)題入手,重點(diǎn)探討了基于嵌入式ARM微處理器的實(shí)時(shí)人臉檢測(cè)、關(guān)鍵特征定位、高效的人臉特征描述、魯棒的人臉識(shí)別分類器及自動(dòng)人臉識(shí)別系統(tǒng)設(shè)計(jì)等問(wèn)題的研究。論文的主要工作和創(chuàng)新點(diǎn)表現(xiàn)在以下方面: 1實(shí)現(xiàn)了結(jié)合膚色校驗(yàn)的Haar特征級(jí)聯(lián)分類器嵌入式實(shí)時(shí)人臉檢測(cè),提出了基于人臉約束的人眼Haar特征RSVM級(jí)聯(lián)分類器人眼檢測(cè)算法和基于遮罩掩磨與橢圓擬合的瞳孔定位算法。 復(fù)雜背景中的人臉檢測(cè)是自動(dòng)人臉識(shí)別系統(tǒng)首先要解決的關(guān)鍵問(wèn)題,通過(guò)對(duì)基于膚色模型和基于Haar特征級(jí)聯(lián)強(qiáng)分類器的人臉檢測(cè)算法的分析研究,綜合兩個(gè)算法的優(yōu)點(diǎn),提出了基于膚色模型校驗(yàn)和Haar特征級(jí)聯(lián)強(qiáng)分類器的嵌入式實(shí)時(shí)人臉檢測(cè)算法。實(shí)驗(yàn)結(jié)果表明,該算法不僅解決了復(fù)雜背景中的類膚色和類人臉結(jié)構(gòu)問(wèn)題,而且具有較高的檢測(cè)率和較快的檢測(cè)速度,同時(shí)對(duì)光照、尺度等變化條件下的人臉檢測(cè)也具有較強(qiáng)的魯棒性。 人眼檢測(cè)與瞳孔定位在人臉歸一化和有效人臉特征抽取等方面起著非常重要的作用,為了快速檢測(cè)人眼并精確定位人眼瞳孔中心,論文提出了基于人臉約束的人眼Haar特征RSVM級(jí)聯(lián)分類器人眼檢測(cè)算法和基于遮罩掩磨與橢圓擬合的瞳孔定位算法,首先利用人眼檢測(cè)分類器在人臉區(qū)域內(nèi)完成對(duì)人眼位置的檢測(cè),然后通過(guò)對(duì)檢測(cè)到的人眼進(jìn)行遮罩掩磨、簡(jiǎn)單圖像形態(tài)學(xué)變換及橢圓擬合實(shí)現(xiàn)瞳孔中心的精確定位。測(cè)試結(jié)果表明該算法只需幾百毫秒便能完成人眼檢測(cè)與瞳孔中心定位整個(gè)過(guò)程,在保證檢測(cè)速度較快的同時(shí),還能確保較高的定位精度。 2 針對(duì)傳統(tǒng)線性判別分析法存在的小樣本問(wèn)題(sss),通過(guò)調(diào)整Fisher判別準(zhǔn)則,實(shí)現(xiàn)了自適應(yīng)線性判別分析算法及相應(yīng)的人臉識(shí)別方法人臉識(shí)別中的小樣本問(wèn)題使線性判別分析算法的類內(nèi)散布矩陣發(fā)生嚴(yán)重退化,導(dǎo)致問(wèn)題無(wú)法求解。本文在人臉識(shí)別小樣本問(wèn)題的基礎(chǔ)上,通過(guò)調(diào)整Fisher判別準(zhǔn)則,利用類間散布矩陣的補(bǔ)空間巧妙地避開(kāi)類內(nèi)散布矩陣的求逆運(yùn)算,通過(guò)訓(xùn)練集每類樣本的樣本數(shù)信息自適應(yīng)改變調(diào)整參數(shù),實(shí)現(xiàn)了自適應(yīng)線性判別分析算法,實(shí)驗(yàn)結(jié)果表明,該算法能有效解決人臉識(shí)別中的小樣本問(wèn)題。 3 提出了基于有效人臉區(qū)域的Gabor特征抽取算法,有效地解決了Gabor特征抽取維數(shù)過(guò)高的問(wèn)題。 Gabor小波對(duì)圖像的光照、尺度變化具有較強(qiáng)魯棒性,是一種良好的人臉特征表征方法。但維數(shù)過(guò)高的Gabor特征造成應(yīng)用系統(tǒng)的維數(shù)災(zāi)難,為解決Gabor特征的維數(shù)災(zāi)難問(wèn)題,論文第四章提出了基于有效人臉區(qū)域的Gabor特征抽取算法,該算法不僅有效地降低了人臉特征向量維數(shù),縮小了人臉特征庫(kù)的規(guī)模,同時(shí)降低了核心算法的時(shí)間和空間復(fù)雜度,而且具有與傳統(tǒng)Gabor特征抽取算法同樣的魯棒性。 4 結(jié)合有效人臉區(qū)域的Gabor特征抽取、自適應(yīng)線性判別分析算法和基于支持向量機(jī)分類策略,提出并實(shí)現(xiàn)了基于支持向量機(jī)的嵌入式人臉識(shí)別和嵌入式人像比對(duì)系統(tǒng)支持向量機(jī)通過(guò)引入核技巧對(duì)訓(xùn)練樣本進(jìn)行學(xué)習(xí)構(gòu)造最小化錯(cuò)分風(fēng)險(xiǎn)的最優(yōu)分類超平面,不僅具有強(qiáng)大的非線性和高維處理能力,而且具有更強(qiáng)的泛化能力。本文研究了支持向量機(jī)的多類分類策略和訓(xùn)練方法,并結(jié)合論文中提出的基于有效人臉區(qū)域的Gabor特征提取算法、自適應(yīng)線性判別分析算法,首次在基于Windows CE操作系統(tǒng)的嵌入式ARM平臺(tái)中實(shí)現(xiàn)了具有較強(qiáng)魯棒性的嵌入式自動(dòng)人臉識(shí)別系統(tǒng)和嵌入式人像比對(duì)系統(tǒng)。 5 提出并初步實(shí)現(xiàn)了基于客戶機(jī)/服務(wù)器結(jié)構(gòu)無(wú)線網(wǎng)絡(luò)模型的遠(yuǎn)距離人臉識(shí)別方案為解決嵌入式人臉識(shí)別系統(tǒng)在海量人臉庫(kù)中進(jìn)行識(shí)別的難題,論文提出并初步實(shí)現(xiàn)了基于客戶機(jī)/服務(wù)器結(jié)構(gòu)無(wú)線網(wǎng)絡(luò)模型的嵌入式遠(yuǎn)距離人臉識(shí)別方案。 客戶機(jī)(嵌入式平臺(tái))完成對(duì)人臉圖像的檢測(cè)、歸一化處理和人臉特征提取,然后通過(guò)無(wú)線網(wǎng)絡(luò)將提取后的人臉特征數(shù)據(jù)傳輸?shù)椒?wù)器端,由服務(wù)器在海量人臉庫(kù)中完成人臉識(shí)別,并將識(shí)別后的結(jié)果通過(guò)無(wú)線網(wǎng)絡(luò)傳輸?shù)娇蛻魴C(jī)顯示輸出,從而實(shí)現(xiàn)基于客戶機(jī)/服務(wù)器無(wú)線網(wǎng)絡(luò)模型的嵌入式遠(yuǎn)距離人臉識(shí)別方案。 6 結(jié)合我們開(kāi)發(fā)的基于ARM的嵌入式自動(dòng)人臉識(shí)別系統(tǒng)和嵌入式人像比對(duì)系統(tǒng),從系統(tǒng)設(shè)計(jì)的角度探討了在嵌入式系統(tǒng)中進(jìn)行人臉識(shí)別應(yīng)用設(shè)計(jì)的思路及應(yīng)該注意的問(wèn)題雖然嵌入式人臉識(shí)別系統(tǒng)的性能很大程度上取決于高效的人臉特征描述和魯棒的人臉識(shí)別核心算法。但是,嵌入式系統(tǒng)的設(shè)計(jì)思想對(duì)嵌入式人臉識(shí)別系統(tǒng)的性能影響同樣值得重視。本文第六章重點(diǎn)闡述了嵌入式自動(dòng)人臉識(shí)別應(yīng)用系統(tǒng)的設(shè)計(jì)思路,并結(jié)合我們自主開(kāi)發(fā)的嵌入式自動(dòng)人臉識(shí)別系統(tǒng)和嵌入式人像比對(duì)系統(tǒng)從系統(tǒng)設(shè)計(jì)的角度探討了嵌入式人臉識(shí)別應(yīng)用系統(tǒng)設(shè)計(jì)中應(yīng)該注意的關(guān)鍵技術(shù)問(wèn)題。 結(jié)合本文提出的算法我們?cè)赑C上完成對(duì)人臉識(shí)別分類器的訓(xùn)練,然后在嵌入式ARM開(kāi)發(fā)平臺(tái)上實(shí)現(xiàn)了嵌入式自動(dòng)人臉識(shí)別、嵌入式人像比對(duì)兩個(gè)便攜式人員身份認(rèn)證系統(tǒng),經(jīng)測(cè)試運(yùn)行效果良好。所提出的人臉識(shí)別算法不僅具有一定的理論參考價(jià)值,而且對(duì)于嵌入式系統(tǒng)應(yīng)用開(kāi)發(fā)、AFR應(yīng)用系統(tǒng)開(kāi)發(fā)也具有一定的借鑒意義。
標(biāo)簽: ARM 架構(gòu) 嵌入式 人臉識(shí)別
上傳時(shí)間: 2013-05-18
上傳用戶:我們的船長(zhǎng)
隨著多媒體技術(shù)的發(fā)展,數(shù)字圖像處理已經(jīng)成為眾多應(yīng)用系統(tǒng)的核心和基礎(chǔ)。它的發(fā)展主要依賴于兩個(gè)性質(zhì)不同、自成體系但又緊密相關(guān)的研究領(lǐng)域:圖像處理算法及其相應(yīng)的電路實(shí)現(xiàn)。圖像處理系統(tǒng)的硬件實(shí)現(xiàn)—般有三種方式:專用的圖像處理器件集成芯片(Application Specific Integrated Circuit)、數(shù)字信號(hào)處理器(Digital Signal Process)和現(xiàn)場(chǎng)可編程門(mén)陣列(Field Programmable Gate Array)以及相關(guān)電路組成。它們可以實(shí)時(shí)高速完成各種圖像處理算法。圖像處理中,低層的圖像預(yù)處理的數(shù)據(jù)量很大,要求處理速度快,但運(yùn)算結(jié)果相對(duì)比較簡(jiǎn)單。相對(duì)于其他兩種方式,基于FPGA的圖像處理方式的系統(tǒng)更適合于圖像的預(yù)處理。本文設(shè)計(jì)了—種基于FPGA的小波域圖像去噪系統(tǒng)。首先,闡述了基于小波變換的圖像去噪算法原理,重點(diǎn)討論了小波鄰域閾值(NeighShrink)去噪算法,并給出了該算法相應(yīng)的Matlab 仿真;然后,為了改進(jìn)鄰域閾值去噪算法中對(duì)每個(gè)分解子帶都采用相同鄰域和閾值的缺點(diǎn),本文提出了基于最小二乘支持向量機(jī)(LS-SVM)分類的鄰域閾值去噪算法和以斯坦無(wú)偏估計(jì) (SURE)為準(zhǔn)則同時(shí)結(jié)合小波系數(shù)尺度間關(guān)系的鄰域閾值去噪算法。經(jīng)Matlab實(shí)驗(yàn)表明,相比于其他幾種經(jīng)典算法,本文提出的兩種改進(jìn)算法在濾除噪聲的同時(shí)能更好地保護(hù)圖像細(xì)節(jié),并在較高噪聲情況下能獲得更高的峰值信噪比。在此基礎(chǔ)上本文將提出的改進(jìn)小波鄰域閾值去噪算法進(jìn)行了相應(yīng)的簡(jiǎn)化,以滿足低噪聲處理要求且易于在FPGA上實(shí)現(xiàn);最后,給出了基于 FPGA的小波鄰域閾值去噪系統(tǒng)的總體結(jié)構(gòu)和FPGA內(nèi)部各功能模塊的具體實(shí)現(xiàn)方案,包括二維離散小波變換模塊、二維離散小波逆變換模塊、SDRAM存儲(chǔ)器控制模塊、去噪計(jì)算模塊和系統(tǒng)核心控制模塊,并對(duì)各個(gè)系統(tǒng)模塊和整體進(jìn)行了仿真驗(yàn)證,結(jié)果表明本文設(shè)計(jì)的基于FPGA 的小波鄰域閾值去噪系統(tǒng)能滿足實(shí)際的圖像處理要求,具有一定的理論和實(shí)際應(yīng)用價(jià)值。關(guān)鍵詞:圖像處理系統(tǒng),F(xiàn)PGA,圖像去噪算法,小波變換
上傳時(shí)間: 2013-05-16
上傳用戶:450976175
由于模擬電路的多樣性、非線性和離散性等特點(diǎn),模擬電路的故障診斷呈現(xiàn)復(fù)雜、難以辨識(shí)等問(wèn)題。針對(duì)已有方法的數(shù)據(jù)不平衡,提出了一種支持向量機(jī)集成的故障診斷方法。使用小波變換方法提取特征向量,在多類別支持向量機(jī)的基礎(chǔ)上,設(shè)計(jì)了模擬電路的最小二乘支持向量機(jī)預(yù)測(cè)模型,實(shí)現(xiàn)了對(duì)模擬電路的狀態(tài)的故障預(yù)測(cè)。將該方法應(yīng)用于Sallen-Key帶通電路進(jìn)行故障預(yù)測(cè)試驗(yàn),結(jié)果表明,該方法比單一支持向量機(jī)、徑向基神經(jīng)網(wǎng)絡(luò)、BP神經(jīng)網(wǎng)絡(luò)和APSVM有更好的分類和泛化性能,故障診斷準(zhǔn)確率更高。
標(biāo)簽: LS-SVM 集成 模擬電路 故障檢測(cè)
上傳時(shí)間: 2013-10-31
上傳用戶:417313137
提出一種基于自適應(yīng)混沌粒子群優(yōu)化和支持向量機(jī)結(jié)合的非線性預(yù)測(cè)建模算法(ACPSO-SVR),引入ACPSO啟發(fā)式尋優(yōu)機(jī)制對(duì)SVR模型的超參數(shù)進(jìn)行自動(dòng)選取,在超參數(shù)取值范圍變化較大的情況下,效果明顯優(yōu)于網(wǎng)格式搜索算法。選取UCI機(jī)器學(xué)習(xí)數(shù)據(jù)庫(kù)中的Forest fires標(biāo)準(zhǔn)數(shù)據(jù)集進(jìn)行測(cè)試,實(shí)驗(yàn)結(jié)果表明該方法具有較高的精度和良好的泛化能力,對(duì)于解決多變量的回歸預(yù)測(cè)問(wèn)題是一種有效的方法。最后給出了混合算法在碳一多相催化領(lǐng)域的兩種典型應(yīng)用,在反應(yīng)動(dòng)力學(xué)模型未知的情況下建立催化劑組份模型和操作條件模型,以及基于混合算法的最優(yōu)催化劑設(shè)計(jì)框架。
標(biāo)簽: ACPSO-SVR 非線性建模 預(yù)測(cè)算法
上傳時(shí)間: 2013-10-23
上傳用戶:alibabamama
lightSVM的源程序,支持向量機(jī)模型
上傳時(shí)間: 2014-01-12
上傳用戶:familiarsmile
mySvm的最新源程序,關(guān)于支持向量機(jī)
上傳時(shí)間: 2015-02-12
上傳用戶:CSUSheep
用MATLAB編寫(xiě)的svm源程序,可以實(shí)現(xiàn)支持向量機(jī),用于特征分類或提取
標(biāo)簽: MATLAB svm 編寫(xiě) 源程序
上傳時(shí)間: 2015-03-19
上傳用戶:sunjet
是一個(gè)用MATLAB編的一個(gè)系統(tǒng),是關(guān)于各個(gè)神經(jīng)我網(wǎng)絡(luò)模型和支持向量機(jī)的軟件包
標(biāo)簽: MATLAB
上傳時(shí)間: 2014-08-22
上傳用戶:CHENKAI
由java開(kāi)發(fā)的軟件包,里面有人工智能所用的很多東東,包括神經(jīng)網(wǎng)絡(luò),支持向量機(jī),決策樹(shù)等分類和回歸分析方法,集成化軟件哦!
上傳時(shí)間: 2014-11-15
上傳用戶:sxdtlqqjl
蟲(chóng)蟲(chóng)下載站版權(quán)所有 京ICP備2021023401號(hào)-1