亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊(cè)

數(shù)值積分

  • 基于HVS的空域分塊數(shù)字水印技術(shù)

     數(shù)字水印作為一種防護(hù)技術(shù),在數(shù)字產(chǎn)品的保護(hù)認(rèn)證方面越發(fā)顯得重要,成為當(dāng)前計(jì)算機(jī)領(lǐng)域研究的熱點(diǎn)問題之一。提出了一種在空域采用分塊重復(fù)嵌入水印信息和HVS相結(jié)合的水印技術(shù)。實(shí)驗(yàn)結(jié)果說明,分塊技術(shù)在空域的使用提高了水印的嵌入強(qiáng)度和降低計(jì)算復(fù)雜度,該算法在抵抗旋轉(zhuǎn)、裁剪、縮放方面等有較強(qiáng)能力;水印算法與HVS技術(shù)的有效性相結(jié)合,數(shù)字水印具有很好的掩蔽性。

    標(biāo)簽: HVS 分塊 數(shù)字水印技術(shù)

    上傳時(shí)間: 2013-10-23

    上傳用戶:qwerasdf

  • 高等模擬集成電路

    近年來,隨著集成電路工藝技術(shù)的進(jìn)步,電子系統(tǒng)的構(gòu)成發(fā)生了兩個(gè)重要的變化: 一個(gè)是數(shù)字信號(hào)處理和數(shù)字電路成為系統(tǒng)的核心,一個(gè)是整個(gè)電子系統(tǒng)可以集成在一個(gè)芯片上(稱為片上系統(tǒng))。這些變化改變了模擬電路在電子系統(tǒng)中的作用,并且影響著模擬集成電路的發(fā)展。 數(shù)字電路不僅具有遠(yuǎn)遠(yuǎn)超過模擬電路的集成規(guī)模,而且具有可編程、靈活、易于附加功能、設(shè)計(jì)周期短、對(duì)噪聲和制造工藝誤差的抗擾性強(qiáng)等優(yōu)點(diǎn),因而大多數(shù)復(fù)雜系統(tǒng)以數(shù)字信號(hào)處理和數(shù)字電路為核心已成為必然的趨勢(shì)。雖然如此,模擬電路仍然是電子系統(tǒng)中非常重要的組成部分。這是因?yàn)槲覀兘佑|到的外部世界的物理量主要都是模擬量,比如圖像、聲音、壓力、溫度、濕度、重量等,要將它們變換為數(shù)字信號(hào),需要模擬信號(hào)處理和數(shù)據(jù)轉(zhuǎn)換電路,如果這些電路性能不夠高,將會(huì)影響整個(gè)系統(tǒng)的性能。其次,系統(tǒng)中的許多功能不可能或很難用數(shù)字電路完成,如微弱信號(hào)放大,很高頻率和寬頻帶信號(hào)的實(shí)時(shí)處理等。因此,雖然模擬電路在系統(tǒng)中不再是核心,但作為固有的模擬世界與數(shù)字系統(tǒng)的接口,其地位和作用仍然十分重要。 片上系統(tǒng)要求將數(shù)字電路和模擬電路集成在一個(gè)芯片上,這希望模擬電路使用與數(shù)字電路相同的制造工藝。隨著MOS器件的線寬不斷減小,使MOS器件的性能不斷提高,MOS數(shù)字電路成為數(shù)字集成電路的主流,并因此促進(jìn)了MOS模擬集成電路的迅速發(fā)展。為了適應(yīng)電子系統(tǒng)功能的不斷擴(kuò)展和性能的不斷提高,對(duì)模擬電路在降低電源電壓、提高工作頻率、擴(kuò)大線性工作范圍和提高性能指標(biāo)的精度和穩(wěn)定度等方面提出更高要求,促進(jìn)了新電路技術(shù)的發(fā)展。 作為研究生課程的教材,本書內(nèi)容是在本科相關(guān)課程基礎(chǔ)上的深化和擴(kuò)展,同時(shí)涉及實(shí)際設(shè)計(jì)中需要考慮的一些問題,重點(diǎn)介紹具有高工作頻率、低電源電壓和高工作穩(wěn)定性的新電路技術(shù)和在電子系統(tǒng)中占有重要地位的功能電路及其中的新技術(shù)。全書共7章,大致可分為三個(gè)部分。第一部分包括第1章和第7章。第1章為MOS模擬集成電路基礎(chǔ),比較全面地介紹MOS器件的工作原理和特性以及由MOS器件構(gòu)成的基本單元電路,為學(xué)習(xí)本教材其他內(nèi)容提供必要的知識(shí)。由于版圖設(shè)計(jì)與工藝參數(shù)對(duì)模擬集成電路性能的影響很大,因此第7章簡(jiǎn)單介紹制造MOS模擬集成電路的CMOS工藝過程和版圖設(shè)計(jì)技術(shù),讀者可以通過對(duì)該章所介紹的相關(guān)背景知識(shí)的了解,更深入地理解MOS器件和電路的特性,有助于更好地完成模擬集成電路的可實(shí)現(xiàn)性設(shè)計(jì)。第二部分為新電路技術(shù),由第2章、第3章和第5章的部分組成,包括近年來逐步獲得廣泛應(yīng)用的電流模電路、抽樣數(shù)據(jù)電路和對(duì)數(shù)域電路,它們?cè)谔岣吖ぷ黝l率、降低電源電壓、擴(kuò)大線性工作范圍和提高性能指標(biāo)的精度和穩(wěn)定度方面具有明顯的潛力,同時(shí)它們也引入了一些模擬電路的新概念。這些內(nèi)容有助于讀者開拓提高電路性能方面的思路。第2章介紹電流模電路的工作原理、特點(diǎn)和典型電路。與傳統(tǒng)的以電壓作為信號(hào)載體的電路不同,這是一種以電流作為信號(hào)載體的電路,雖然在電路中電壓和電流總是共同存在并相互作用的,但由于信號(hào)載體不同,不僅電路性能不同而且電路結(jié)構(gòu)也不同。第3章介紹抽樣數(shù)據(jù)電路的特點(diǎn)和開關(guān)電容與開關(guān)電流電路的工作原理、分析方法與典型電路。抽樣數(shù)據(jù)電路類似于數(shù)字電路,處理的是時(shí)間離散信號(hào),又類似于模擬電路,處理的是幅度連續(xù)信號(hào),它比模擬電路具有穩(wěn)定準(zhǔn)確的時(shí)間常數(shù),解決了模擬電路實(shí)際應(yīng)用中的一大障礙。對(duì)數(shù)域電路在第5章中結(jié)合其在濾波器中的應(yīng)用介紹,這類電路除具有良好的電性能外,還提出了一種利用器件的非線性特性實(shí)現(xiàn)線性電路的新思路。第三部分介紹幾個(gè)模擬電路的功能模塊,它們是電子系統(tǒng)中的關(guān)鍵組成部分,并且與信號(hào)和信號(hào)處理聯(lián)系密切,有助于在信號(hào)和電路間形成整體觀念。這部分包括第4章至第6章。第4章介紹數(shù)據(jù)轉(zhuǎn)換電路的技術(shù)指標(biāo)和高精度與高速度轉(zhuǎn)換電路的構(gòu)成、工作原理、特點(diǎn)和典型電路。第5章介紹模擬集成濾波器的設(shè)計(jì)方法和主要類型,包括連續(xù)時(shí)間濾波器、對(duì)數(shù)域?yàn)V波器和抽樣數(shù)據(jù)濾波器。第6章介紹通信系統(tǒng)中的收發(fā)器與射頻前端電路,包括收信器、發(fā)信器的技術(shù)指標(biāo)、結(jié)構(gòu)和典型電路。因?yàn)檩d波通信系統(tǒng)傳輸?shù)氖悄M信號(hào),射頻前端電路的性能對(duì)整個(gè)通信系統(tǒng)有直接的影響,所以射頻集成電路已成為重要的研究課題。 〖〗高等模擬集成電路〖〗〖〗前言〖〗〖〗本書是在為研究生開設(shè)的“高等模擬集成電路”課程講義的基礎(chǔ)上整理而成,由董在望主編,第1、4、7章由李冬梅編寫,第6章由王志華編寫,第5章由李永明和董在望編寫,第2、3章由董在望編寫,李國林參加了部分章節(jié)的校核工作。 本書可作為信息與通信工程和電子科學(xué)與技術(shù)學(xué)科相關(guān)課程的研究生教材或教學(xué)參考書,也可作為本科教學(xué)參考書或選修課教材和供相關(guān)專業(yè)的工程技術(shù)人員參考。 清華大學(xué)出版社多位編輯為本書的出版做了卓有成效的工作,深致謝意。 限于編者水平,難免有錯(cuò)誤和疏漏之處,歡迎批評(píng)指正。 目錄 1.1MOS器件基礎(chǔ)及器件模型 1.1.1結(jié)構(gòu)及工作原理 1.1.2襯底調(diào)制效應(yīng) 1.1.3小信號(hào)模型 1.1.4亞閾區(qū)效應(yīng) 1.1.5短溝效應(yīng) 1.1.6SPICE模型 1.2基本放大電路 1.2.1共源(CS)放大電路 1.2.2共漏(CD)放大電路 1.2.3共柵(CG)放大電路 1.2.4共源共柵(CSCG)放大電路 1.2.5差分放大電路 1.3電流源電路 1.3.1二極管連接的MOS器件 1.3.2基本鏡像電流源 1.3.3威爾遜電流源 1.3.4共源共柵電流源 1.3.5有源負(fù)載放大電路 1.4運(yùn)算放大器 1.4.1運(yùn)算放大器的主要參數(shù) 1.4.2單級(jí)運(yùn)算放大器 1.4.3兩級(jí)運(yùn)算放大器 1.4.4共模反饋(CMFB) 1.4.5運(yùn)算放大器的頻率補(bǔ)償 1.5模擬開關(guān) 1.5.1導(dǎo)通電阻 1.5.2電荷注入與時(shí)鐘饋通 1.6帶隙基準(zhǔn)電壓源 1.6.1工作原理 1.6.2與CMOS工藝兼容的帶隙基準(zhǔn)電壓源 思考題 2電流模電路 2.1概述 2.1.1電流模電路的概念 2.1.2電流模電路的特點(diǎn) 2.2基本電流模電路 2.2.1電流鏡電路 2.2.2電流放大器 2.2.3電流模積分器 2.3電流模功能電路 2.3.1跨導(dǎo)線性電路 2.3.2電流傳輸器 2.4從電壓模電路變換到電流模電路 2.5電流模電路中的非理想效應(yīng) 2.5.1MOSFET之間的失配 2.5.2寄生電容對(duì)頻率特性的影響 思考題 3抽樣數(shù)據(jù)電路 3.1開關(guān)電容電路和開關(guān)電流電路的基本分析方法 3.1.1開關(guān)電容電路的時(shí)域分析 3.1.2開關(guān)電流電路的時(shí)域分析 3.1.3抽樣數(shù)據(jù)電路的頻域分析 3.2開關(guān)電容電路 3.2.1開關(guān)電容單元電路 3.2.2開關(guān)電容電路的特點(diǎn) 3.2.3非理想因素的影響 3.3開關(guān)電流電路 3.3.1開關(guān)電流單元電路 3.3.2開關(guān)電流電路的特點(diǎn) 3.3.3非理想因素的影響 思考題 4A/D轉(zhuǎn)換器與D/A轉(zhuǎn)換器 4.1概述 4.1.1電子系統(tǒng)中的A/D與D/A轉(zhuǎn)換 4.1.2A/D與D/A轉(zhuǎn)換器的基本原理 4.1.3A/D與D/A轉(zhuǎn)換器的性能指標(biāo) 4.1.4A/D與D/A轉(zhuǎn)換器的分類 4.1.5A/D與D/A轉(zhuǎn)換器中常用的數(shù)碼類型 4.2高速A/D轉(zhuǎn)換器 4.2.1全并行結(jié)構(gòu)A/D轉(zhuǎn)換器 4.2.2兩步結(jié)構(gòu)A/D轉(zhuǎn)換器 4.2.3插值與折疊結(jié)構(gòu)A/D轉(zhuǎn)換器 4.2.4流水線結(jié)構(gòu)A/D轉(zhuǎn)換器 4.2.5交織結(jié)構(gòu)A/D轉(zhuǎn)換器 4.3高精度A/D轉(zhuǎn)換器 4.3.1逐次逼近型A/D轉(zhuǎn)換器 4.3.2雙斜率積分型A/D轉(zhuǎn)換器 4.3.3過采樣ΣΔA/D轉(zhuǎn)換器 4.4D/A轉(zhuǎn)換器 4.4.1電阻型D/A轉(zhuǎn)換器 4.4.2電流型D/A轉(zhuǎn)換器 4.4.3電容型D/A轉(zhuǎn)換器 思考題 5集成濾波器 5.1引言 5.1.1濾波器的數(shù)學(xué)描述 5.1.2濾波器的頻率特性 5.1.3濾波器設(shè)計(jì)的逼近方法 5.2連續(xù)時(shí)間濾波器 5.2.1連續(xù)時(shí)間濾波器的設(shè)計(jì)方法 5.2.2跨導(dǎo)電容(GmC)連續(xù)時(shí)間濾波器 5.2.3連續(xù)時(shí)間濾波器的片上自動(dòng)調(diào)節(jié)電路 5.3對(duì)數(shù)域?yàn)V波器 5.3.1對(duì)數(shù)域電路概念及其特點(diǎn) 5.3.2對(duì)數(shù)域電路基本單元 5.3.3對(duì)數(shù)域?yàn)V波器 5.4抽樣數(shù)據(jù)濾波器 5.4.1設(shè)計(jì)方法 5.4.2SZ域映射 5.4.3開關(guān)電容電路轉(zhuǎn)換為開關(guān)電流電路的方法 思考題 6收發(fā)器與射頻前端電路 6.1通信系統(tǒng)中的射頻收發(fā)器 6.2集成收信器 6.2.1外差式接收與鏡像信號(hào) 6.2.2復(fù)數(shù)信號(hào)處理 6.2.3收信器前端結(jié)構(gòu) 6.3集成發(fā)信器 6.3.1上變換器 6.3.2發(fā)信器結(jié)構(gòu) 6.4收發(fā)器的技術(shù)指標(biāo) 6.4.1噪聲性能 6.4.2靈敏度 6.4.3失真特性與線性度 6.4.4動(dòng)態(tài)范圍 6.5射頻電路設(shè)計(jì) 6.5.1晶體管模型與參數(shù) 6.5.2噪聲 6.5.3集成無源器件 6.5.4低噪聲放大器 6.5.5混頻器 6.5.6頻率綜合器 6.5.7功率放大器 思考題 7CMOS集成電路制造工藝及版圖設(shè)計(jì) 7.1集成電路制造工藝簡(jiǎn)介 7.1.1單晶生長(zhǎng)與襯底制備 7.1.2光刻 7.1.3氧化 7.1.4擴(kuò)散及離子注入 7.1.5化學(xué)氣相淀積(CVD) 7.1.6接觸與互連 7.2CMOS工藝流程與集成電路中的元件 7.2.1硅柵CMOS工藝流程 7.2.2CMOS集成電路中的無源元件 7.2.3CMOS集成電路中的寄生效應(yīng) 7.3版圖設(shè)計(jì) 7.3.1硅柵CMOS集成電路的版圖構(gòu)成 7.3.2版圖設(shè)計(jì)規(guī)則 7.3.3CMOS版圖設(shè)計(jì)技術(shù) 思考題

    標(biāo)簽: 模擬集成電路

    上傳時(shí)間: 2013-11-13

    上傳用戶:chengxin

  • 電容值的讀取方法

    常見電容值的讀取方法

    標(biāo)簽: 電容值 讀取

    上傳時(shí)間: 2013-11-10

    上傳用戶:WMC_geophy

  • 基于幀間差分與模板匹配相結(jié)合的運(yùn)動(dòng)目標(biāo)檢測(cè)

    基于圖形處理器單元(GPU)提出了一種幀間差分與模板匹配相結(jié)合的運(yùn)動(dòng)目標(biāo)檢測(cè)算法。在CUDA-SIFT(基于統(tǒng)一計(jì)算設(shè)備架構(gòu)的尺度不變特征變換)算法提取圖像匹配特征點(diǎn)的基礎(chǔ)上,優(yōu)化隨機(jī)采樣一致性算法(RANSAC)剔除圖像中由于目標(biāo)運(yùn)動(dòng)部分產(chǎn)生的誤匹配點(diǎn),運(yùn)用背景補(bǔ)償?shù)姆椒▽㈧o態(tài)背景下的幀間差分目標(biāo)檢測(cè)算法應(yīng)用于動(dòng)態(tài)情況,實(shí)現(xiàn)了動(dòng)態(tài)背景下的運(yùn)動(dòng)目標(biāo)檢測(cè),通過提取目標(biāo)特征與后續(xù)多幀圖像進(jìn)行特征匹配的方法最終實(shí)現(xiàn)自動(dòng)目標(biāo)檢測(cè)。實(shí)驗(yàn)表明該方法對(duì)運(yùn)動(dòng)目標(biāo)較小、有噪聲、有部分遮擋的圖像序列具有良好的目標(biāo)檢測(cè)效果。

    標(biāo)簽: 幀間差分 模板匹配 運(yùn)動(dòng)目標(biāo)檢測(cè)

    上傳時(shí)間: 2013-10-09

    上傳用戶:ifree2016

  • ADC的九個(gè)關(guān)鍵指標(biāo)

        模擬轉(zhuǎn)換器性能不只依賴分辨率規(guī)格   大量的模數(shù)轉(zhuǎn)換器(ADC)使人們難以選擇最適合某種特定應(yīng)用的ADC器件。工程師們選擇ADC時(shí),通常只注重位數(shù)、信噪比(SNR)、諧波性能,但是其它規(guī)格也同樣重要。本文將介紹ADC器件最易受到忽視的九項(xiàng)規(guī)格,并說明它們是如何影響ADC性能的。   1. SNR比分辨率更為重要。   ADC規(guī)格中最常見的是所提供的分辨率,其實(shí)該規(guī)格并不能表明ADC器件的任何能力。但可以用位數(shù)n來計(jì)算ADC的理論SNR:   不 過工程師也許并不知道,熱噪聲、時(shí)鐘抖動(dòng)、差分非線性(DNL)誤差以及其它參數(shù)異常都會(huì)限制ADC器件的SNR。對(duì)于高性能高分辨率轉(zhuǎn)換器尤其如此。一 些數(shù)據(jù)表提供有效位數(shù)(ENOB)規(guī)格,它描述了ADC器件所能提供的有效位數(shù)。為了計(jì)算ADC的ENOB值,應(yīng)把測(cè)量的SNR值放入上述公式,并求解 n。

    標(biāo)簽: ADC 指標(biāo)

    上傳時(shí)間: 2014-12-22

    上傳用戶:z240529971

  • 時(shí)鐘分相技術(shù)應(yīng)用

    摘要: 介紹了時(shí)鐘分相技術(shù)并討論了時(shí)鐘分相技術(shù)在高速數(shù)字電路設(shè)計(jì)中的作用。 關(guān)鍵詞: 時(shí)鐘分相技術(shù); 應(yīng)用 中圖分類號(hào): TN 79  文獻(xiàn)標(biāo)識(shí)碼:A   文章編號(hào): 025820934 (2000) 0620437203 時(shí)鐘是高速數(shù)字電路設(shè)計(jì)的關(guān)鍵技術(shù)之一, 系統(tǒng)時(shí)鐘的性能好壞, 直接影響了整個(gè)電路的 性能。尤其現(xiàn)代電子系統(tǒng)對(duì)性能的越來越高的要求, 迫使我們集中更多的注意力在更高頻率、 更高精度的時(shí)鐘設(shè)計(jì)上面。但隨著系統(tǒng)時(shí)鐘頻率的升高。我們的系統(tǒng)設(shè)計(jì)將面臨一系列的問 題。 1) 時(shí)鐘的快速電平切換將給電路帶來的串?dāng)_(Crosstalk) 和其他的噪聲。 2) 高速的時(shí)鐘對(duì)電路板的設(shè)計(jì)提出了更高的要求: 我們應(yīng)引入傳輸線(T ransm ission L ine) 模型, 并在信號(hào)的匹配上有更多的考慮。 3) 在系統(tǒng)時(shí)鐘高于100MHz 的情況下, 應(yīng)使用高速芯片來達(dá)到所需的速度, 如ECL 芯 片, 但這種芯片一般功耗很大, 再加上匹配電阻增加的功耗, 使整個(gè)系統(tǒng)所需要的電流增大, 發(fā) 熱量增多, 對(duì)系統(tǒng)的穩(wěn)定性和集成度有不利的影響。 4) 高頻時(shí)鐘相應(yīng)的電磁輻射(EM I) 比較嚴(yán)重。 所以在高速數(shù)字系統(tǒng)設(shè)計(jì)中對(duì)高頻時(shí)鐘信號(hào)的處理應(yīng)格外慎重, 盡量減少電路中高頻信 號(hào)的成分, 這里介紹一種很好的解決方法, 即利用時(shí)鐘分相技術(shù), 以低頻的時(shí)鐘實(shí)現(xiàn)高頻的處 理。 1 時(shí)鐘分相技術(shù) 我們知道, 時(shí)鐘信號(hào)的一個(gè)周期按相位來分, 可以分為360°。所謂時(shí)鐘分相技術(shù), 就是把 時(shí)鐘周期的多個(gè)相位都加以利用, 以達(dá)到更高的時(shí)間分辨。在通常的設(shè)計(jì)中, 我們只用到時(shí)鐘 的上升沿(0 相位) , 如果把時(shí)鐘的下降沿(180°相位) 也加以利用, 系統(tǒng)的時(shí)間分辨能力就可以 提高一倍(如圖1a 所示)。同理, 將時(shí)鐘分為4 個(gè)相位(0°、90°、180°和270°) , 系統(tǒng)的時(shí)間分辨就 可以提高為原來的4 倍(如圖1b 所示)。 以前也有人嘗試過用專門的延遲線或邏輯門延時(shí)來達(dá)到時(shí)鐘分相的目的。用這種方法產(chǎn)生的相位差不夠準(zhǔn)確, 而且引起的時(shí)間偏移(Skew ) 和抖動(dòng) (J itters) 比較大, 無法實(shí)現(xiàn)高精度的時(shí)間分辨。 近年來半導(dǎo)體技術(shù)的發(fā)展, 使高質(zhì)量的分相功能在一 片芯片內(nèi)實(shí)現(xiàn)成為可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能優(yōu)異的時(shí)鐘 芯片。這些芯片的出現(xiàn), 大大促進(jìn)了時(shí)鐘分相技術(shù)在實(shí)際電 路中的應(yīng)用。我們?cè)谶@方面作了一些嘗試性的工作: 要獲得 良好的時(shí)間性能, 必須確保分相時(shí)鐘的Skew 和J itters 都 比較小。因此在我們的設(shè)計(jì)中, 通常用一個(gè)低頻、高精度的 晶體作為時(shí)鐘源, 將這個(gè)低頻時(shí)鐘通過一個(gè)鎖相環(huán)(PLL ) , 獲得一個(gè)較高頻率的、比較純凈的時(shí)鐘, 對(duì)這個(gè)時(shí)鐘進(jìn)行分相, 就可獲得高穩(wěn)定、低抖動(dòng)的分 相時(shí)鐘。 這部分電路在實(shí)際運(yùn)用中獲得了很好的效果。下面以應(yīng)用的實(shí)例加以說明。2 應(yīng)用實(shí)例 2. 1 應(yīng)用在接入網(wǎng)中 在通訊系統(tǒng)中, 由于要減少傳輸 上的硬件開銷, 一般以串行模式傳輸 圖3 時(shí)鐘分為4 個(gè)相位 數(shù)據(jù), 與其同步的時(shí)鐘信號(hào)并不傳輸。 但本地接收到數(shù)據(jù)時(shí), 為了準(zhǔn)確地獲取 數(shù)據(jù), 必須得到數(shù)據(jù)時(shí)鐘, 即要獲取與數(shù) 據(jù)同步的時(shí)鐘信號(hào)。在接入網(wǎng)中, 數(shù)據(jù)傳 輸?shù)慕Y(jié)構(gòu)如圖2 所示。 數(shù)據(jù)以68MBös 的速率傳輸, 即每 個(gè)bit 占有14. 7ns 的寬度, 在每個(gè)數(shù)據(jù) 幀的開頭有一個(gè)用于同步檢測(cè)的頭部信息。我們要找到與它同步性好的時(shí)鐘信號(hào), 一般時(shí)間 分辨應(yīng)該達(dá)到1ö4 的時(shí)鐘周期。即14. 7ö 4≈ 3. 7ns, 這就是說, 系統(tǒng)時(shí)鐘頻率應(yīng)在300MHz 以 上, 在這種頻率下, 我們必須使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型門延遲為340p s) , 如前所述, 這樣對(duì)整個(gè)系統(tǒng)設(shè)計(jì)帶來很多的困擾。 我們?cè)谶@里使用鎖相環(huán)和時(shí)鐘分相技術(shù), 將一個(gè)16MHz 晶振作為時(shí)鐘源, 經(jīng)過鎖相環(huán) 89429 升頻得到68MHz 的時(shí)鐘, 再經(jīng)過分相芯片AMCCS4405 分成4 個(gè)相位, 如圖3 所示。 我們只要從4 個(gè)相位的68MHz 時(shí)鐘中選擇出與數(shù)據(jù)同步性最好的一個(gè)。選擇的依據(jù)是: 在每個(gè)數(shù)據(jù)幀的頭部(HEAD) 都有一個(gè)8bit 的KWD (KeyWord) (如圖1 所示) , 我們分別用 這4 個(gè)相位的時(shí)鐘去鎖存數(shù)據(jù), 如果經(jīng)某個(gè)時(shí)鐘鎖存后的數(shù)據(jù)在這個(gè)指定位置最先檢測(cè)出這 個(gè)KWD, 就認(rèn)為下一相位的時(shí)鐘與數(shù)據(jù)的同步性最好(相關(guān))。 根據(jù)這個(gè)判別原理, 我們?cè)O(shè)計(jì)了圖4 所示的時(shí)鐘分相選擇電路。 在板上通過鎖相環(huán)89429 和分相芯片S4405 獲得我們所要的68MHz 4 相時(shí)鐘: 用這4 個(gè) 時(shí)鐘分別將輸入數(shù)據(jù)進(jìn)行移位, 將移位的數(shù)據(jù)與KWD 作比較, 若至少有7bit 符合, 則認(rèn)為檢 出了KWD。將4 路相關(guān)器的結(jié)果經(jīng)過優(yōu)先判選控制邏輯, 即可輸出同步性最好的時(shí)鐘。這里, 我們運(yùn)用AMCC 公司生產(chǎn)的 S4405 芯片, 對(duì)68MHz 的時(shí)鐘進(jìn)行了4 分 相, 成功地實(shí)現(xiàn)了同步時(shí)鐘的獲取, 這部分 電路目前已實(shí)際地應(yīng)用在某通訊系統(tǒng)的接 入網(wǎng)中。 2. 2 高速數(shù)據(jù)采集系統(tǒng)中的應(yīng)用 高速、高精度的模擬- 數(shù)字變換 (ADC) 一直是高速數(shù)據(jù)采集系統(tǒng)的關(guān)鍵部 分。高速的ADC 價(jià)格昂貴, 而且系統(tǒng)設(shè)計(jì) 難度很高。以前就有人考慮使用多個(gè)低速 圖5 分相技術(shù)應(yīng)用于采集系統(tǒng) ADC 和時(shí)鐘分相, 用以替代高速的ADC, 但由 于時(shí)鐘分相電路產(chǎn)生的相位不準(zhǔn)確, 時(shí)鐘的 J itters 和Skew 比較大(如前述) , 容易產(chǎn)生較 大的孔徑晃動(dòng)(Aperture J itters) , 無法達(dá)到很 好的時(shí)間分辨。 現(xiàn)在使用時(shí)鐘分相芯片, 我們可以把分相 技術(shù)應(yīng)用在高速數(shù)據(jù)采集系統(tǒng)中: 以4 分相后 圖6 分相技術(shù)提高系統(tǒng)的數(shù)據(jù)采集率 的80MHz 采樣時(shí)鐘分別作為ADC 的 轉(zhuǎn)換時(shí)鐘, 對(duì)模擬信號(hào)進(jìn)行采樣, 如圖5 所示。 在每一采集通道中, 輸入信號(hào)經(jīng)過 緩沖、調(diào)理, 送入ADC 進(jìn)行模數(shù)轉(zhuǎn)換, 采集到的數(shù)據(jù)寫入存儲(chǔ)器(M EM )。各個(gè) 采集通道采集的是同一信號(hào), 不過采樣 點(diǎn)依次相差90°相位。通過存儲(chǔ)器中的數(shù) 據(jù)重組, 可以使系統(tǒng)時(shí)鐘為80MHz 的采 集系統(tǒng)達(dá)到320MHz 數(shù)據(jù)采集率(如圖6 所示)。 3 總結(jié) 靈活地運(yùn)用時(shí)鐘分相技術(shù), 可以有效地用低頻時(shí)鐘實(shí)現(xiàn)相當(dāng)于高頻時(shí)鐘的時(shí)間性能, 并 避免了高速數(shù)字電路設(shè)計(jì)中一些問題, 降低了系統(tǒng)設(shè)計(jì)的難度。

    標(biāo)簽: 時(shí)鐘 分相 技術(shù)應(yīng)用

    上傳時(shí)間: 2013-12-17

    上傳用戶:xg262122

  • 信號(hào)分離電路(ppt)

    第四章  信號(hào)分離電路 第四章  信號(hào)分離電路 第一節(jié)  濾波器的基本知識(shí)一、濾波器的功能和類型1、功能:濾波器是具有頻率選擇作用的電路或運(yùn)算處理系統(tǒng),具有濾除噪聲和分離各種不同信號(hào)的功能。2、類型:按處理信號(hào)形式分:模擬濾波器和數(shù)字濾波器按功能分:低通、高通、帶通、帶阻按電路組成分:LC無源、RC無源、由特殊元件構(gòu)成的無源濾波器、RC有源濾波器按傳遞函數(shù)的微分方程階數(shù)分:一階、二階、高階第一節(jié)  濾波器的基本知識(shí) 第一節(jié)  濾波器的基本知識(shí)二、模擬濾波器的傳遞函數(shù)與頻率特性(一)模擬濾波器的傳遞函數(shù)模擬濾波電路的特性可由傳遞函數(shù)來描述。傳遞函數(shù)是輸出與輸入信號(hào)電壓或電流拉氏變換之比。經(jīng)分析,任意個(gè)互相隔離的線性網(wǎng)絡(luò)級(jí)聯(lián)后,總的傳遞函數(shù)等于各網(wǎng)絡(luò)傳遞函數(shù)的乘積。這樣,任何復(fù)雜的濾波網(wǎng)絡(luò),可由若干簡(jiǎn)單的一階與二階濾波電路級(jí)聯(lián)構(gòu)成。 第一節(jié)  濾波器的基本知識(shí)(二)模擬濾波器的頻率特性模擬濾波器的傳遞函數(shù)H(s)表達(dá)了濾波器的輸入與輸出間的傳遞關(guān)系。若濾波器的輸入信號(hào)Ui是角頻率為w的單位信號(hào),濾波器的輸出Uo(jw)=H(jw)表達(dá)了在單位信號(hào)輸入情況下的輸出信號(hào)隨頻率變化的關(guān)系,稱為濾波器的頻率特性函數(shù),簡(jiǎn)稱頻率特性。頻率特性H(jw)是一個(gè)復(fù)函數(shù),其幅值A(chǔ)(w)稱為幅頻特性,其幅角∮(w)表示輸出信號(hào)的相位相對(duì)于輸入信號(hào)相位的變化,稱為相頻特性。 

    標(biāo)簽: 信號(hào)分離 電路

    上傳時(shí)間: 2014-12-23

    上傳用戶:wutong

  • 一種DDS任意波形發(fā)生器的ROM優(yōu)化方法

    提出了一種改進(jìn)的基于直接頻率合成技術(shù)(DDS)的任意波形發(fā)生器在現(xiàn)場(chǎng)可編程門陣列(FPGA)上的實(shí)現(xiàn)方法。首先將三角波、正弦波、方波和升/降鋸齒波的波形數(shù)據(jù)寫入片外存儲(chǔ)器,當(dāng)調(diào)用時(shí)再將相應(yīng)的數(shù)據(jù)移入FPGA的片上RAM,取代分區(qū)塊的將所有類型波形數(shù)據(jù)同時(shí)存儲(chǔ)在片上RAM中的傳統(tǒng)方法;再利用正弦波和三角波的波形在4個(gè)象限的對(duì)稱性以及鋸齒波的線性特性,通過硬件反相器對(duì)波形數(shù)據(jù)和尋址地址值進(jìn)行處理,實(shí)現(xiàn)了以1/4的數(shù)據(jù)量還原出精度不變的模擬信號(hào),從而將整體的存儲(chǔ)量減小為原始設(shè)計(jì)方案的5%。經(jīng)驗(yàn)證,這種改進(jìn)方法正確可行,能夠大大降低開發(fā)成本。

    標(biāo)簽: DDS ROM 任意波形發(fā)生器

    上傳時(shí)間: 2013-12-25

    上傳用戶:日光微瀾

  • PCB布線的直角走線、差分走線和蛇形線基礎(chǔ)理論

    PCB布線的直角走線、差分走線和蛇形線基礎(chǔ)理論

    標(biāo)簽: PCB 布線 差分走線 走線

    上傳時(shí)間: 2013-10-10

    上傳用戶:haohao

  • 差分線對(duì)的PCB設(shè)計(jì)要點(diǎn)

      信號(hào)完整性是高速數(shù)字系統(tǒng)中要解決的一個(gè)首要問題之一,如何在高速PCB 設(shè)計(jì)過程中充分考慮信號(hào)完整性因素,并采取有效的控制措施,已經(jīng)成為當(dāng)今系統(tǒng)設(shè)計(jì)能否成功的關(guān)鍵。在這方面,差分線對(duì)具有很多優(yōu)勢(shì),比如更高的比特率 ,更低的功耗 ,更好的噪聲性能和更穩(wěn)定的可靠性等。目前,差分線對(duì)在高速數(shù)字電路設(shè)計(jì)中的應(yīng)用越來越廣泛,電路中最關(guān)鍵的信號(hào)往往都要采用差分線對(duì)設(shè)計(jì)。介紹了差分線對(duì)在PCB 設(shè)計(jì)中的一些要點(diǎn),并給出具體設(shè)計(jì)方案。

    標(biāo)簽: PCB 差分線

    上傳時(shí)間: 2014-12-24

    上傳用戶:540750247

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲人成毛片在线播放女女| 欧美激情二区三区| 亚洲少妇一区| 免费不卡在线视频| 免费永久网站黄欧美| 欧美二区在线播放| 国产精品国产自产拍高清av王其| 国产日韩在线一区| 狠狠久久五月精品中文字幕| 久久久欧美精品| 欧美伦理一区二区| 国产资源精品在线观看| 亚洲三级视频| 欧美一级播放| 欧美系列一区| 亚洲日本无吗高清不卡| 久久www成人_看片免费不卡| 在线观看欧美日韩国产| 亚洲理论在线观看| 久久久久高清| 日韩亚洲欧美一区| 国产日韩欧美一区二区| 在线观看成人av电影| 欧美女主播在线| 国产精品―色哟哟| 国产精品chinese| 1024亚洲| 另类图片国产| 久久久久综合网| 欧美日韩一区二区视频在线观看| 牛牛国产精品| 欧美日韩一区二区三区四区五区 | 亚洲无亚洲人成网站77777| 国产精品一级在线| 欧美视频在线免费看| 亚洲国产精品va在线看黑人动漫| 国产视频久久网| 国产精品日韩在线播放| 国产精品美女一区二区在线观看| 国产精品视频免费| 国产免费成人在线视频| 99视频日韩| 一区二区三区福利| 欧美精品一区三区| 亚洲黄页视频免费观看| 国外成人性视频| 亚洲精品国产精品久久清纯直播 | 久久嫩草精品久久久精品一| 亚洲一区二区三区四区中文| 欧美日韩一区在线| 亚洲欧美中日韩| 国产一区二区三区高清在线观看 | 欧美jizz19性欧美| 亚洲国产欧美在线人成| 欧美1区3d| 最新亚洲电影| 欧美日韩国产一区| 亚洲在线免费| 狠狠入ady亚洲精品经典电影| 欧美特黄视频| 亚洲午夜性刺激影院| 久久精品国产亚洲a| 国产欧美 在线欧美| 伊人色综合久久天天| 毛片一区二区| 国产精品久久久久久影院8一贰佰| 亚洲婷婷免费| 在线播放豆国产99亚洲| 欧美电影免费观看大全| 亚洲人成在线观看| 亚洲丝袜av一区| 午夜精品久久久久久久99黑人| 国产亚洲在线| 亚洲一区二区动漫| 欧美日韩国产三区| 在线观看亚洲精品视频| 久久国产精品久久w女人spa| 欧美日韩国产精品自在自线| 国产女主播一区| 亚洲一区二区三区四区视频| 欧美日韩国产美女| 亚洲欧美韩国| 91久久国产综合久久蜜月精品| 亚洲一区二区不卡免费| 欧美日韩黄色一区二区| 久久久人成影片一区二区三区观看| 激情六月婷婷久久| 欧美视频一区二区三区在线观看| 国产亚洲视频在线观看| 亚洲破处大片| 国产性天天综合网| 国产精品网站在线播放| 免费一级欧美片在线播放| 在线不卡欧美| 男男成人高潮片免费网站| 榴莲视频成人在线观看| 亚洲小说欧美另类婷婷| 另类综合日韩欧美亚洲| 亚洲一区二区在线观看视频| 亚洲精品一区久久久久久| 日韩视频在线一区| 国模大胆一区二区三区| 国产精品国产福利国产秒拍| 欧美色欧美亚洲高清在线视频| 久久综合久久美利坚合众国| 亚洲男人的天堂在线观看| 亚洲欧美在线磁力| 国产性天天综合网| 亚洲影院免费观看| 99精品欧美一区二区三区| 伊人婷婷久久| 亚洲国产va精品久久久不卡综合| 国模 一区 二区 三区| 99国产精品国产精品久久 | 在线看片欧美| 国产精品亚洲成人| 老色批av在线精品| 久久亚洲精品伦理| 国产精品乱人伦一区二区| 欧美视频一区二区三区四区| 欧美人成网站| 欧美日韩国产美女| 欧美激情第1页| 欧美日韩国产精品一区| 欧美午夜视频一区二区| 国产精品美女视频网站| 国产亚洲精品bv在线观看| 亚洲二区免费| 99www免费人成精品| 亚洲性感美女99在线| 亚洲欧美日韩在线不卡| 香蕉成人啪国产精品视频综合网| 久久精品视频免费播放| 亚洲电影成人| 国产农村妇女毛片精品久久莱园子| 国产精品嫩草99a| 国产婷婷成人久久av免费高清| 亚洲第一精品夜夜躁人人躁| 亚洲黄色一区| 亚洲人成欧美中文字幕| 国产精品久久综合| 国内精品美女av在线播放| 亚洲精品在线一区二区| 久久综合伊人77777麻豆| 在线看片欧美| 欧美黑人在线播放| 欧美另类高清视频在线| 国产精品尤物| 久久狠狠亚洲综合| 亚洲永久在线| 久久精品夜色噜噜亚洲aⅴ| 亚洲专区在线| 欧美精品1区| 久热精品视频在线观看| 久久国内精品自在自线400部| 欧美激情第9页| 国产一区二区黄| 欧美日韩另类综合| 国产精品永久在线| 99精品视频一区二区三区| 欧美暴力喷水在线| 国产日韩欧美黄色| 亚洲图片你懂的| 欧美伦理91i| 欧美美女bbbb| 韩国三级在线一区| 亚洲免费小视频| 在线精品国精品国产尤物884a| 亚洲品质自拍| 激情综合视频| 午夜精品视频| 蜜臀久久99精品久久久画质超高清 | 欧美日韩国产成人精品| 国产精品免费一区豆花| 伊人久久久大香线蕉综合直播| 亚洲日本激情| 久久婷婷综合激情| 在线一区二区视频| 国产欧美日韩三级| 亚洲香蕉成视频在线观看| 亚洲美女网站| 欧美成人国产va精品日本一级| 伊人久久婷婷| 久久综合色影院| 亚洲成色777777女色窝| 麻豆乱码国产一区二区三区| 韩国美女久久| 国产精品色午夜在线观看| 亚洲欧美日韩直播| 欧美亚洲第一区| 欧美午夜女人视频在线| 国产精品永久免费观看| 午夜在线视频观看日韩17c| 国产午夜精品福利| 亚洲精品一区二区三区福利| 麻豆9191精品国产| 欧美精品尤物在线| 国产精品一区在线观看你懂的| 一区二区三区在线观看国产| 国产精品久久国产精品99gif|