近年來,隨著超聲學(xué)研究的發(fā)展,功率超聲技術(shù)得到了越來越廣泛的應(yīng)用。超聲波清洗技術(shù)作為功率超聲技術(shù)的一個分支,以清洗速度快、效果好、易于實現(xiàn)自動化等優(yōu)點,為傳統(tǒng)工業(yè)清洗領(lǐng)域注入了新鮮的血液。作為超聲波清洗機的核心組件,超聲逆變電源的設(shè)計一直是超聲波清洗系統(tǒng)設(shè)計的關(guān)鍵環(huán)節(jié),它性能的好壞很大程度上決定了最終的清洗效果。以往的超聲逆變電源的設(shè)計通常是基于模擬集成控制芯片的,這種實現(xiàn)方式在頻率、功率控制的精度和速度上以及系統(tǒng)的靈活性、穩(wěn)定性方面存在著一定的局限性,限制了超聲逆變電源的發(fā)展。數(shù)字控制技術(shù)的出現(xiàn),很好地彌補了上述缺陷,因此本課題將數(shù)字控制技術(shù)引入到超聲逆變電源控制電路的設(shè)計中是很有意義的。 本文首先對超聲逆變電源的基本結(jié)構(gòu)和工作原理做了簡單介紹,針對超聲逆變電源各部分的結(jié)構(gòu)特點,并結(jié)合一些傳統(tǒng)設(shè)計方案優(yōu)缺點的分析,確定了二極管不控整流的整流電路設(shè)計方案、電壓源型串聯(lián)諧振逆變器的逆變電路實現(xiàn)方案、基于鎖相環(huán)的頻率跟蹤實現(xiàn)方案、和基于PWM脈寬調(diào)制技術(shù)的功率調(diào)節(jié)實現(xiàn)方案。接著,文章詳細介紹了頻率自動跟蹤和功率控制的具體實現(xiàn)方法,利用數(shù)學(xué)推理和波形分析的方式闡明了方案的可行性,并通過軟件仿真驗證了方案的正確性。然后,文章還設(shè)計了主電路諧振軟開關(guān)、人機接口電路、采樣電路、IGBT驅(qū)動以及過流過溫保護電路。方案確定了之后,通過觀察自制電路板的實驗波形表明新構(gòu)建的超聲逆變電源可以保證系統(tǒng)在復(fù)雜工況下處于諧振狀態(tài),驗證了全數(shù)字頻率跟蹤系統(tǒng)和功率調(diào)節(jié)系統(tǒng)的可行性和有效性。 本文的重點和創(chuàng)新點在于將超聲逆變電源的控制電路通過數(shù)字化來實現(xiàn)。本文創(chuàng)新地利用FPGA構(gòu)建了全數(shù)字頻率跟蹤系統(tǒng)——數(shù)字鎖相環(huán)和全數(shù)字功率調(diào)節(jié)系統(tǒng)——數(shù)字PWM調(diào)制、數(shù)字PID調(diào)節(jié),從而取代了傳統(tǒng)的模擬鎖相環(huán)芯片CD4046和模擬PWM控制芯片SG3525,在控制的精確性、快速性和靈活性上都有了很大的提高。此外,利用ATmega16單片機實現(xiàn)了人機接口電路、頻率采樣和電流A/D轉(zhuǎn)換,并通過SPI接口與FPGA進行數(shù)據(jù)傳輸,完善了數(shù)字控制體系,從而實現(xiàn)了基于FPGA和單片機的全數(shù)字控制超聲逆變電源系統(tǒng)。
標簽:
超聲逆變電源
數(shù)字追頻控制
上傳時間:
2022-05-30
上傳用戶: