本文對家用電器中語音識別技術(shù)的DSP實(shí)現(xiàn)進(jìn)行了研究。文章介紹了語音識別技術(shù)的基本概念,討論了語音識別系統(tǒng)的組成和實(shí)現(xiàn)的技術(shù);詳細(xì)分析了構(gòu)成語音識別系統(tǒng)的四個組成部分,包括語音信號數(shù)字化與預(yù)處理、語音的端點(diǎn)檢測、特征提取與模式匹配。著重介紹了實(shí)現(xiàn)端點(diǎn)檢測的短時平均能量與短時平均過零率分析,語音信號的線性預(yù)測分析及在此基礎(chǔ)之上的倒譜特征參數(shù),以及實(shí)現(xiàn)模式匹配的常用的矢量量化技術(shù)、動態(tài)時間規(guī)整技術(shù)和隱馬爾可夫模型;根據(jù)提出的語音識別系統(tǒng)的構(gòu)成,介紹了在MATLAB6.5上實(shí)現(xiàn)了采用動態(tài)時間規(guī)整算法的識別系統(tǒng)的仿真分析。
標(biāo)簽: DSP 家用電器 語音識別技術(shù)
上傳時間: 2013-04-24
上傳用戶:zwei41
艦船、飛機(jī)、移動通訊、石油鉆井平臺等獨(dú)立系統(tǒng)中有許多交直流電力并存的場合,需要實(shí)現(xiàn)發(fā)供電系統(tǒng)的小型化、高功率密度、高可靠性以及高品質(zhì)。常規(guī)的電勵磁發(fā)電機(jī)因?yàn)閹в须娝⑹构╇娤到y(tǒng)的運(yùn)行安全存在隱患,并且勵磁機(jī)的使用增加了電機(jī)的體積和損耗。為使系統(tǒng)節(jié)能高效,本文設(shè)計并制作了應(yīng)用于獨(dú)立交直流電力系統(tǒng)的交直流永磁同步發(fā)電機(jī)。永磁電機(jī)定子上帶有三套三相繞組,一套繞組用于提供交流電力,其余的兩套繞組相位互差30度電角度,接整流器為直流負(fù)載供電。文中對電機(jī)的設(shè)計以及電機(jī)的基本性能進(jìn)行探討。為了減小永磁發(fā)電機(jī)的電壓調(diào)整率,在電機(jī)的交軸與電機(jī)的永磁磁極尾部之間加一軟磁材料,通過增加電機(jī)負(fù)載時的交軸電抗壓降,來改善電機(jī)的電壓調(diào)整率。 首先,針對永磁電機(jī)設(shè)計的特殊性,應(yīng)用二維有限元法計算電機(jī)的電磁場以確定電機(jī)的主要尺寸,并討論了不同軟磁材料尺寸對電機(jī)的影響。文中還根據(jù)電磁場的計算結(jié)果,應(yīng)用傅立葉級數(shù)計算了電機(jī)的空載感應(yīng)電動勢以用于預(yù)測電機(jī)的性能,使用能量攝動法計算了計及飽和、槽影響下的電機(jī)電感參數(shù)。考慮到永磁材料的溫度性能問題,應(yīng)用電磁場和溫度場耦合的方式計算了電機(jī)穩(wěn)態(tài)時的溫度場。 然后,為了了解永磁同步發(fā)電機(jī)的主要電磁關(guān)系,研究了電機(jī)的數(shù)學(xué)模型,推導(dǎo)了考慮漏磁時具有三套互差一定電角度三相繞組的永磁發(fā)電機(jī)在dq0坐標(biāo)系下的方程,可以看到,在dq0坐標(biāo)系下電機(jī)的電感參數(shù)為常數(shù)。這樣,利用這個特性,在對電機(jī)運(yùn)行性能進(jìn)行研究時,可以得到簡化電磁方程。根據(jù)電機(jī)穩(wěn)態(tài)運(yùn)行時的方程,得到了電機(jī)的向量圖。 因?yàn)閹в卸嗵桌@組的永磁電機(jī)中含有較多的諧波,而采用dq0坐標(biāo)系下的方程會忽略掉氣隙磁場中的諧波分量,為了對電機(jī)的仿真更加精確,電機(jī)仿真時采用電機(jī)在ABC坐標(biāo)系下的基本電磁方程。應(yīng)用Matlab/SimPowerSystems中的模塊搭建電機(jī)的仿真模型,永磁體的影響用感應(yīng)電動勢來表示。根據(jù)仿真結(jié)果與樣機(jī)試驗(yàn)結(jié)果的比較發(fā)現(xiàn),兩者吻合良好。 另外,本文還設(shè)計了一臺電勵磁的交直流發(fā)電機(jī),電磁設(shè)計結(jié)果表明,永磁電機(jī)在體積、重量、效率方面都很有優(yōu)勢。
標(biāo)簽: 交直流 永磁同步 發(fā)電機(jī)
上傳時間: 2013-04-24
上傳用戶:ynzfm
本課題來源于國家863計劃《高速高效防爆稀土永磁同步電機(jī)研究》項目的部分研究內(nèi)容。為了進(jìn)一步提高稀土永磁同步電動機(jī)的效率,本論文主要采用有限元分析與實(shí)驗(yàn)相結(jié)合的方法,重點(diǎn)針對稀土永磁同步電動機(jī)穩(wěn)態(tài)運(yùn)行時的諧波轉(zhuǎn)子銅耗、瞬態(tài)起動過程以及空載諧波磁場進(jìn)行了深入研究。 論文利用有限元電磁場仿真軟件MagNet,對油田抽油用22kW稀土永磁同步電動機(jī)進(jìn)行了詳細(xì)的電磁場仿真計算,首次,對諧波磁場引起的稀土永磁同步電動機(jī)穩(wěn)態(tài)運(yùn)行時的轉(zhuǎn)子銅耗進(jìn)行了深入分析。通過對22kW電機(jī)的間接法和直接法效率實(shí)驗(yàn),分離出諧波引起的雜散損耗,并與仿真計算結(jié)果進(jìn)行對比分析,證明了:實(shí)際稀土永磁同步電動機(jī)穩(wěn)態(tài)運(yùn)行時是存在轉(zhuǎn)子銅耗的,這也是和傳統(tǒng)稀土永磁同步電動機(jī)理論不同的地方。研究成果《稀土永磁同步電動機(jī)穩(wěn)態(tài)運(yùn)行時的轉(zhuǎn)子銅耗分析》發(fā)表在核心期刊《微特電機(jī)》2006年第9期上。 論文采用有限元MagNet對抽油用22kW稀土永磁同步電動機(jī)進(jìn)行了起動過程的仿真研究,并利用先進(jìn)的動態(tài)示波記錄儀DL750對22kW電機(jī)進(jìn)行了空載起動過程的實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果表明有限元電磁仿真計算結(jié)果是準(zhǔn)確的,也為稀土永磁同步電動機(jī)的優(yōu)化設(shè)計提供了參考依據(jù)。研究成果《基于有限元的稀土永磁同步電動機(jī)起動過程仿真研究》發(fā)表在核心期刊《微特電機(jī)》2007年第1期上。 論文應(yīng)用有限元電磁場軟件MagNet對作者設(shè)計的370W稀土永磁同步電動機(jī)的空載氣隙磁場進(jìn)行了仿真分析,得到空載諧波磁場的波形畸變率是6.23﹪;為了驗(yàn)證有限元分析結(jié)果的正確性,專門設(shè)計了兩臺370W稀土永磁同步電動機(jī)對拖實(shí)驗(yàn),利用WT3000電力分析儀分析出:實(shí)際空載氣隙磁場波形的畸變率是3.26﹪;通過實(shí)驗(yàn)結(jié)果和仿真結(jié)果的對比分析,發(fā)現(xiàn)實(shí)際電機(jī)的轉(zhuǎn)子鼠籠條對電機(jī)空載諧波磁場有很好的抑止作用。初步的研究成果《稀土永磁同步電動機(jī)空載氣隙磁場的諧波分析研究》于2006年12月投到核心期刊《微特電機(jī)》上。
標(biāo)簽: 有限元分析 稀土 永磁同步電動機(jī)
上傳時間: 2013-04-24
上傳用戶:chengli008
近年來,人們對環(huán)境保護(hù)越來越重視,SF<,6>氣體的使用和排放受到限制,從而使電器領(lǐng)域內(nèi)SF<,6>斷路器的發(fā)展也受到限制。而真空斷路器充分利用了真空優(yōu)異的絕緣與熄弧特性,且對環(huán)境不造成污染,所以目前在中壓領(lǐng)域已經(jīng)占據(jù)了主導(dǎo)地位,而且不斷向高電壓、大容量方向發(fā)展。因此,未來高壓真空斷路器必然取代高壓SF<,6>斷路器。真空滅弧室是真空斷路器的“心臟”,所以,開發(fā)高壓真空斷路器最關(guān)鍵的是滅弧室的設(shè)計。本文對110kV的真空滅弧室的內(nèi)部電磁場進(jìn)行了仿真分析,為我國開發(fā)110kV真空斷路器提供一定的參考。 本文采用有限元軟件對110kV真空斷路器滅弧室內(nèi)部靜電場進(jìn)行了仿真分析,得到了滅弧室內(nèi)部各種屏蔽罩的大小、尺寸和位置對電場分布的影響;觸頭距離對滅弧室內(nèi)部電場分布的影響;傘裙對滅弧室內(nèi)部電場分布的影響。再根據(jù)等離子體和金屬蒸氣具有一定導(dǎo)電率的特點(diǎn),從麥克斯韋基本方程出發(fā),推導(dǎo)了滅弧室內(nèi)部電場所滿足的計算方程,然后用有限元法對二維電場進(jìn)行了求解??紤]到弧后粒子消散過程中,電極和懸浮導(dǎo)體表面會有帶電微粒的存在,又計算分析了帶電微粒對真空滅弧室電場分布的影響,進(jìn)而提出了使滅弧室內(nèi)部電場更加均勻的措施。 根據(jù)大電流真空電弧的物理模型,基于磁場對電流的作用力理論,計算分析了真空電弧自生磁場的收縮效應(yīng)以及對分?jǐn)嚯娀〉挠绊?,得到了弧柱中自生磁場產(chǎn)生的電磁壓強(qiáng)分布,最后分析了外加縱向磁場分量對減小自生磁場收縮效應(yīng)的作用。 建立了110kV、1/2線圈以及1/3線圈縱向磁場觸頭三維電極模型,并利用有限元法進(jìn)行了三維靜磁場和渦流場仿真。得到了電流在峰值和過零時縱向磁場分別在觸頭片表面和觸頭間隙中心平面上的二維和三維分布,給出了這兩種觸頭在電流過零時縱向磁場滯后時間沿徑向路徑和軸向路徑的分布規(guī)律,最后還對這兩種觸頭的性能進(jìn)行了比較。
上傳時間: 2013-07-09
上傳用戶:smthxt
電力變壓器是電力系統(tǒng)中及其重要的電氣設(shè)備,它的安全運(yùn)行直接關(guān)系到電力系統(tǒng)的穩(wěn)定。變壓器長期在電網(wǎng)中運(yùn)行會發(fā)生各種故障和事故,一旦遭到破壞,損失巨大。通過預(yù)防性試驗(yàn)和油中溶解氣體的氣相色譜分析結(jié)果判斷變壓器的絕緣狀況,對防止事故的發(fā)生有很大作用,但定期的預(yù)防性試驗(yàn)可能出現(xiàn)過多的維修和不必要的停機(jī),又不能及時發(fā)現(xiàn)故障;而變壓器在線監(jiān)測可以及早發(fā)現(xiàn)變壓器故障,避免事故的發(fā)生,而且可以降低維護(hù)成本。 變壓器中最常發(fā)生故障的部位是繞組,它的損壞率約占整個變壓器故障的60%~70%。診斷繞組變形的方法中,頻率響應(yīng)法、阻抗分析法、低壓脈沖法雖然有可取之處,但是都屬于離線方法,不能及時發(fā)現(xiàn)變壓器的故障,不適于在線測量;通過實(shí)時計算變壓器繞組短路電抗來在線診斷變壓器故障是一種有效的在線監(jiān)測方法。 本文根據(jù)變壓器繞組的短路電抗在正常運(yùn)行時不發(fā)生變化,而在變壓器內(nèi)部故障時要發(fā)生變化的特性,應(yīng)用辯識理論,利用變壓器三相電壓、電流的測量值來辨識繞組的短路電抗。把辨識結(jié)果對比正常時的三相繞組的短路電抗,可以發(fā)現(xiàn)繞組是否異常及故障發(fā)生的部位,保證變壓器元件得到及時更換,防止變壓器非正常退出運(yùn)行。 本文采用傅立葉算法來計算變壓器三相電壓、電流采樣信號的基波分量的幅值與相角,實(shí)現(xiàn)變壓器繞組的參數(shù)辨識,此時并沒有考慮衰減直流分量。經(jīng)過分析,當(dāng)采樣信號中存在衰減直流分量時傅立葉算法就會產(chǎn)生誤差,而遞推最小二乘法和卡爾曼濾波效果很好。 最后本文介紹了變壓器繞組參數(shù)辨識的實(shí)際應(yīng)用與誤差分析,分析了系統(tǒng)中軟件、硬件方面的問題對測量短路電抗造成的影響;以及參數(shù)辨識的軟件設(shè)計和運(yùn)行試驗(yàn),驗(yàn)證了方案的可行性。
上傳時間: 2013-07-29
上傳用戶:xyipie
盤式永磁電機(jī)因其較高的轉(zhuǎn)矩密度和良好的動態(tài)響應(yīng)特性,在各種驅(qū)動、伺服和控制領(lǐng)域得到了迅速的推廣和應(yīng)用。本文針對盤式永磁同步電動機(jī)的設(shè)計展開研究,所做工作主要包括以下幾個部分: 首先,從電機(jī)的主要尺寸方程入手將盤式永磁電機(jī)和徑向永磁電機(jī)的轉(zhuǎn)矩密度進(jìn)行了比較,得到了兩種電機(jī)轉(zhuǎn)矩密度的變化關(guān)系。推導(dǎo)了六相盤式永磁同步電動機(jī)的電樞反應(yīng)電抗、槽漏抗等的計算公式,同時也給出了這些參數(shù)相應(yīng)的有限元計算方法,兩種計算結(jié)果基本一致。并且在對多極少齒結(jié)構(gòu)電機(jī)的漏磁系數(shù)進(jìn)行研究的基礎(chǔ)上,總結(jié)了該類電機(jī)的漏磁系數(shù)的計算方法。 其次,采用了針對六相電機(jī)的22極24槽結(jié)構(gòu),使得電機(jī)的主要尺寸減小,電機(jī)定子沖槽、電樞下線等工藝要求降低。利用有限元法和傅立葉分析求解對永磁體的形狀進(jìn)行優(yōu)化,可使得永磁電機(jī)氣隙磁密波形畸變率減小,進(jìn)而降低的轉(zhuǎn)矩波動。定量分析了不同定子槽口寬度對空載反電動勢波形和齒槽轉(zhuǎn)矩的影響規(guī)律。 通過對盤式永磁電機(jī)的磁場分布特點(diǎn)的研究,編寫了分環(huán)法盤式永磁電機(jī)電磁設(shè)計程序。通過對樣機(jī)設(shè)計值與實(shí)驗(yàn)值比較,不斷對盤式永磁電動機(jī)的電磁程序進(jìn)行完善和修正,目前已經(jīng)形成了一個比較實(shí)用可靠的CAD軟件。 對盤式永磁電機(jī)轉(zhuǎn)子盤體進(jìn)行剛度計算,并且也對電機(jī)的定子進(jìn)行了固有頻率的計算,保證了電機(jī)的可靠運(yùn)行。 最后,在上述研究的基礎(chǔ)上,本文設(shè)計制造了一臺5kW的雙定子單轉(zhuǎn)子結(jié)構(gòu)的盤式永磁同步電動機(jī)樣機(jī)并做了詳細(xì)的實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果與理論分析基本一致。
標(biāo)簽: 高功率密度 永磁同步電動機(jī)
上傳時間: 2013-07-29
上傳用戶:acon
音響技術(shù)發(fā)展到今天,音頻功率放大器得到了極大的發(fā)展。而一個好的功放必須有一個好的能量來源。一般來說功放電源的成本占功放成本的一半左右,可見電源在功放中的重要性。 本文提出了一種功放電源設(shè)計方案,并進(jìn)行了一些理論上的分析,仿真研究和實(shí)驗(yàn)調(diào)試,具體包括以下幾個方面: 對前級的APFC(有源功率因數(shù)校正)部分提出一種基于單周控制(OCC)原理的新技術(shù),對此電路的理論進(jìn)行詳細(xì)的分析。對電路的元件以及儲能電感等都進(jìn)行了計算,并進(jìn)行了仿真實(shí)驗(yàn)最后完成電路設(shè)計與調(diào)試。 針對功放電源對瞬態(tài)響應(yīng),頻率響應(yīng),負(fù)載調(diào)整率以及電源調(diào)整率的高條件要求,本文提出利用LLC諧振變換器技術(shù)滿足該功放實(shí)現(xiàn)大功率設(shè)計需要的目的,由于將主電路的工作頻率取到100KHZ以上,這樣的設(shè)計也將反應(yīng)時間提高到微秒級別,電源變化的噪聲將不會出現(xiàn)音頻輸出;并且LLC諧振變換器軟開關(guān)電源技術(shù)也大大地提高了電源效率。仿真和實(shí)驗(yàn)結(jié)果表明,LLC諧振變換器能滿足功放電源的要求。
上傳時間: 2013-04-24
上傳用戶:daoxiang126
本課題的研究工作主要圍繞機(jī)床用永磁交流伺服電動機(jī)設(shè)計展開,所做的主要工作包括以下幾個部分: 首先,釹鐵硼永磁材料導(dǎo)電率較高、耐熱性能較差,當(dāng)電機(jī)氣隙磁場諧波含量較大時,永磁體中就會感應(yīng)出渦流形成渦流損耗導(dǎo)致永磁體發(fā)熱。因此,有必要對轉(zhuǎn)子永磁體內(nèi)的渦流進(jìn)行計算和分析。本文分析了永磁同步電動機(jī)轉(zhuǎn)子永磁體內(nèi)渦流產(chǎn)生的原因,建立渦流的數(shù)學(xué)模型并推導(dǎo)出永磁體渦流損耗的計算公式。用ANSOFT有限元軟件建立電動機(jī)的物理模型進(jìn)行電磁場求解,結(jié)合路的計算公式算出永磁體的渦流損耗。 其次,運(yùn)行平穩(wěn)性是伺服電動機(jī)的一項重要的性能指標(biāo),而轉(zhuǎn)矩波動的大小直接影響運(yùn)行平穩(wěn)性。本文分析了機(jī)床用永磁交流伺服電動機(jī)轉(zhuǎn)矩波動產(chǎn)生的原因,運(yùn)用轉(zhuǎn)矩波動計算公式結(jié)合ANSOFT有限元軟件,計算比較相同功率、相同極數(shù)不同槽數(shù)時,電動機(jī)的轉(zhuǎn)矩波動情況。通過比較計算出的轉(zhuǎn)矩波動百分比的大小,選擇所設(shè)計電動機(jī)的極槽配合,以提高機(jī)床用永磁交流伺服電動機(jī)的運(yùn)行性能。 最后,完成機(jī)床用永磁交流伺服電動機(jī)基本結(jié)構(gòu)尺寸以及電磁參數(shù)的選取,利用有限元軟件,分析計算氣隙長度變化對失步轉(zhuǎn)矩倍數(shù)和永磁體用量的影響,以及永磁體寬度對氣隙磁密波形的影響,以此合理選擇氣隙長度和永磁體的寬度,使電動機(jī)的性能更優(yōu)良。在上述研究的基礎(chǔ)上,本文設(shè)計了一臺0.9kW,8極36槽的機(jī)床用永磁交流伺服電動機(jī)樣機(jī),并對其性能進(jìn)行了測試,測試結(jié)果表明,電機(jī)的性能指標(biāo)達(dá)到了預(yù)期的要求,證明了電機(jī)設(shè)計過程理論分析計算的正確性。
上傳時間: 2013-06-13
上傳用戶:腳趾頭
高性能伺服控制系統(tǒng)日益廣泛地應(yīng)用于現(xiàn)代工業(yè)、家用電器和國防等各個領(lǐng)域。采用先進(jìn)控制策略和全數(shù)字控制技術(shù)的永磁同步電機(jī)伺服系統(tǒng),已成為高性能伺服系統(tǒng)發(fā)展的主流方向。應(yīng)用在交流伺服系統(tǒng)上的背景技術(shù)不斷進(jìn)步,同時市場對伺服系統(tǒng)性能、成本及自適應(yīng)能力的要求也不斷提高。 本文從詳細(xì)分析了永磁同步電機(jī)的數(shù)學(xué)模型和矢量控制的基本原理,選取了基于id=0轉(zhuǎn)子磁場定向矢量控制方式,采用電壓空間矢量(SVPWM)調(diào)制技術(shù),建立了位置、轉(zhuǎn)速、電流三閉環(huán)控制的永磁同步電機(jī)伺服系統(tǒng)。針對伺服系統(tǒng)在運(yùn)行過程中參數(shù)變化及負(fù)載擾動等問題,深入分析了連續(xù)與離散系統(tǒng)滑模變結(jié)構(gòu)控制器設(shè)計的基本原則和方法,將滑模變結(jié)構(gòu)控制與矢量控制相結(jié)合,改進(jìn)了基于趨近率的單段滑模面變結(jié)構(gòu)控制,設(shè)計了適用于矢量控制位置伺服系統(tǒng)的分段式滑模變結(jié)構(gòu)控制器。在Matlab/Simulink7.1仿真環(huán)境和以Freescale MC56F8346DSP為核心的實(shí)驗(yàn)系統(tǒng)平臺進(jìn)行了詳盡的仿真和實(shí)驗(yàn)研究。結(jié)果表明本系統(tǒng)滿足高性能伺服控制系統(tǒng)的基本要求,滑模變結(jié)構(gòu)控制能夠有效應(yīng)用于矢量控制伺服系統(tǒng)并提高其魯棒性。
標(biāo)簽: 滑模變結(jié)構(gòu) 控制 伺服系統(tǒng)
上傳時間: 2013-07-18
上傳用戶:yph853211
能源和環(huán)境的雙重壓力、電子技術(shù)與控制理論的飛速發(fā)展使得柴油機(jī)控制能夠采用電子控制技術(shù),并成為柴油機(jī)控制的研究熱點(diǎn)。本文針對我國內(nèi)燃機(jī)車牽引用的柴油機(jī)(12V240ZJ6E),主要研究其電控單體泵的電子控制技術(shù)。實(shí)現(xiàn)了電控單體泵在實(shí)驗(yàn)臺上的電子控制,為最終降低內(nèi)燃機(jī)車柴油機(jī)在輕載工況下的燃油消耗率并改善其排放打下基礎(chǔ)。在以下三方面展開研究工作: 首先,根據(jù)柴油機(jī)的燃油噴射原理,深入研究高壓燃油在泵-管-嘴系統(tǒng)中的傳遞規(guī)律,分析燃油噴射系統(tǒng)的各種電子控制方式,結(jié)合我國內(nèi)燃機(jī)車柴油機(jī)改造的現(xiàn)狀并參考國內(nèi)外應(yīng)用實(shí)例,確定采用“電控單體泵系統(tǒng)”方案。針對性地分析電控單體泵的特性,總結(jié)出電控單體泵的控制規(guī)律。 其次,設(shè)計電控單體泵的高速大流量電磁閥驅(qū)動模塊,其性能直接影響電磁閥的響應(yīng)特性。通過計算和試驗(yàn)對比的方法獲得不同驅(qū)動電壓、不同續(xù)流回路情況時的動態(tài)響應(yīng),找出最優(yōu)電路參數(shù)和控制參數(shù)。用于多缸柴油機(jī)的驅(qū)動模塊可以修正各單體泵噴油特性的差異。 第三,設(shè)計凸輪軸轉(zhuǎn)速的測量模塊。采集安裝于凸輪軸上的測速齒輪的脈沖信號,計算凸輪軸的瞬時轉(zhuǎn)速和相位,并對瞬時轉(zhuǎn)速進(jìn)行預(yù)測,為查找脈譜表以確定噴油定時和噴油量奠定基礎(chǔ)。凸輪軸轉(zhuǎn)速的預(yù)測方法為“相鄰區(qū)間+自適應(yīng)參數(shù)修正”。 最后,設(shè)計控制電路,以數(shù)字信號處理器為主控芯片。在數(shù)字信號處理器中完成柴油機(jī)的轉(zhuǎn)速測量和電磁閥驅(qū)動脈沖生成。由于內(nèi)燃機(jī)車上的電磁環(huán)境比較惡劣,采用了抗干擾措施。 通過上述工作,掌握了電控單體泵系統(tǒng)的基本特性,完成了電子控制單元主要電路的設(shè)計,并實(shí)現(xiàn)凸輪軸的測速和電磁閥的控制。電子控制單元在電控單體泵試驗(yàn)臺上進(jìn)行了試驗(yàn)。結(jié)果表明,測速準(zhǔn)確、電磁閥驅(qū)動及其控制方式合理,為后續(xù)工作打下良好的基礎(chǔ)。
標(biāo)簽: 內(nèi)燃機(jī) 車用 柴油機(jī)
上傳時間: 2013-04-24
上傳用戶:xz85592677
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1