貴州電解鋁廠供電四車間廠房內變壓器、整流柜、電容等設備種類繁多,同系列設備安放距離跨度較大.這些電力電子器件長期運行導致系統(tǒng)內部某些連接點絕緣介質老化,甚至脫落.這種現(xiàn)象單憑肉眼很難觀察,該廠對此問題的解決方法為:技術工人攜帶小型紅外探測儀定期采集上述器件的某些連接點,從紅外圖像數(shù)據(jù)得出溫度數(shù)據(jù)以此判斷器件工作是否處于良好狀態(tài).由于人為因素,工人不一定能全部獲取所有連接點數(shù)據(jù).可見,此方法費時費力,還存在隱患. 針對現(xiàn)行探測方法存在的弊端,依托"中鋁貴州分公司電解鋁廠整流所安全運行監(jiān)控系統(tǒng)開發(fā)"項目,利用一臺直線行走的智能小車停靠在已選擇的定位點處監(jiān)測車間的電器設備,因此這就涉及到了監(jiān)控小車的精準定位問題.本文以卞位機智能監(jiān)控小車為研究對象,采用模糊PID控制技術對PLC發(fā)出的脈沖頻率進行自動調節(jié),依據(jù)脈沖頻率誤差E和誤差變化率EC的變化對PID控制的參數(shù)進行自整定,實現(xiàn)對小車速度的模糊控制,從而實現(xiàn)了小車的精準定位,為上位機的監(jiān)控工作做好了準備. 論文第一章介紹了電解鋁廠供電車間的供電情況,分析了小車定位精準的重要性,介紹了本文的研究內容.第二章對小車主要結構的硬件設計作了介紹.第三章論述了小車的運動控制,從分析步進電機的矩頻特性和數(shù)學模型入手,介紹了小車的啟停控制和運動中的測速.第四章論述了小車的精準定位方法,介紹了模糊PID控制器設計,重點介紹了模糊PID控制算法的程序設計.第五章列舉了實際運行調試中出現(xiàn)的幾種問題,介紹了相應的控制方法加以克服.第六章對論文進行了總結.
標簽: 直線 智能監(jiān)控 定位
上傳時間: 2013-04-24
上傳用戶:kirivir
環(huán)境的不斷污染、石油能源的加劇消耗促使純電動車成為了各國各汽車廠商爭相研究的對象。而閥控免維護鉛酸蓄電池(VRLA)憑著其低廉的價格優(yōu)勢占據(jù)了車用蓄電池的大部分市場份額。本文旨在開發(fā)一套完整的VRLA蓄電池管理系統(tǒng),包括蓄電池狀態(tài)檢測、均衡充放電管理、溫度管理、充放電管理等。 本文首先討論了車用VRLA蓄電池的特性,包括其失效模式、改進方式以及各種充電方法對其物理上的影響。隨后,針對VRLA車用蓄電池,本文著重討論了電動汽車蓄電池的智能管理系統(tǒng),第三章到第四章詳細介紹了裝載車內的管理系統(tǒng)(檢測系統(tǒng)、均衡系統(tǒng));第五章著重討論了置于車外的充放電管理系統(tǒng)的設計和實現(xiàn)。 狀態(tài)檢測系統(tǒng)系統(tǒng)主要包括電池狀態(tài)采集系統(tǒng)以及剩余容量SoC、健康狀態(tài)SoH測量系統(tǒng)。本文針對電動汽車這個特殊應用場合,提出了一種新的同時基于AH定律、Peukert方程、溫度修正、SoH以及開路電壓的的容量預測方法。 均衡充電系統(tǒng)的目的是保持串聯(lián)電池組單體電池容量的均衡。均衡管理系統(tǒng)主要包括控制器、開關組件以及輔助均衡充電器三個部分。 主充電系統(tǒng)采用的是正負脈沖的充電方式,本系統(tǒng)通過一個全橋雙向DC/DC變流器來實現(xiàn)。主充電器的功率等級為20kW,在本課題組中,這個功率等級較之以往有較大的突破。
上傳時間: 2013-04-24
上傳用戶:飛翔的胸毛
51單片機最最小系統(tǒng),作為學習參考,對大家有幫助
標簽: 51單片機 最小系統(tǒng)
上傳時間: 2013-07-28
上傳用戶:dba1592201
斷路器是電力系統(tǒng)中重要的控制和保護設備,對維護電力系統(tǒng)的安全、穩(wěn)定和可靠運行起著重要的作用。如何使斷路器高度智能化,并且更安全和可靠,是電力系統(tǒng)保護的發(fā)展要求,也是本論文研究的目的。 本文在深入研究了智能斷路器國內外發(fā)展狀況的基礎上,精心設計了以數(shù)字信號處理器DSP和復雜可編程邏輯器件CPLD為核心的系統(tǒng)硬件。DSP是智能斷路器測控單元的核心器件,它實現(xiàn)斷路器的各種保護、報警、顯示與控制功能。CPLD完成狀態(tài)量的監(jiān)測,以及各種邏輯信號的輸出。兩種器件相互配合使得斷路器系統(tǒng)更加智能化。研究了斷路器測控單元的測量原理及保護算法,并進行了具體的硬件和軟件模塊的設計,旨在實現(xiàn)斷路器的智能保護、遠程控制和集中管理。本設計以TI公司的DSP芯片TMS320LF2407為核心。硬件設計主要包括信號調理模塊設計、信號采樣模塊設計、保護執(zhí)行模塊設計、CPLD模塊設計和輸入輸出模塊設計。并且利用TMS320LF2407本身具有的CAN2.0模塊,通過CAN總線實現(xiàn)斷路器和上位機的通信,實現(xiàn)遙測、遙調、遙控、遙信等“四遙”功能。軟件采用模塊化設計,每一個模塊相對獨立,完成某個特定功能,便于維護和添加新功能,并且調試靈活方便。文中給出了主程序及各個子程序的流程圖,其中子程序有數(shù)據(jù)采集子程序、FFT計算子程序、液晶顯示子程序、短路瞬時保護子程序、過載長延時保護子程序、接地故障保護子程序和短路短延時保護子程序等。并且設計中充分考慮了斷路器工作環(huán)境的惡劣性,分析了各種干擾的來源,并針對各種干擾采取了對應的軟件和硬件的抗干擾措施。最后,為了驗證全波傅氏算法能否滿足電網(wǎng)數(shù)據(jù)處理精度的要求,利用MATLAB搭建仿真平臺,對其進行了仿真。結果表明全波傅氏算法能達到系統(tǒng)的要求。
上傳時間: 2013-04-24
上傳用戶:BK094
在能源枯竭及環(huán)境污染問題日益嚴重的今天,光伏發(fā)電是未來可再生能源應用的一種重要方法。本文以光伏逆變技術為研究對象,對光伏系統(tǒng)最大功率點跟蹤方法、光伏智能充電控制策略、光伏并網(wǎng)系統(tǒng)拓撲結構與控制方法、光伏并網(wǎng)與有源濾波統(tǒng)一控制方法等問題進行了深入研究。 在擾動觀測法的基礎上,提出了一種直接電流控制最大功率點跟蹤方法,通過檢測變換器輸出電流進行最大功率點跟蹤控制,簡化控制算法,同時省去了擾動觀測法中的電壓和電流傳感器,降低系統(tǒng)成本。 研究了一種實用的光伏系統(tǒng)蓄電池充電控制策略,將最大功率點跟蹤與智能充電控制有機結合在一起,充分利用光伏電池的輸出功率,縮短充電時間,提高充電效率;研究了一種全數(shù)字式逆變器,通過電壓有效值外環(huán)和瞬時值內環(huán)的雙閉環(huán)控制,既能保證系統(tǒng)輸出電壓的穩(wěn)態(tài)精度,又能保證瞬變負載條件下的動態(tài)特性。研制了一套3kW光伏獨立發(fā)電系統(tǒng)并進行了實驗驗證。 針對住宅型光伏并網(wǎng)逆變器體積小、性能價格比高的要求,研究了一種基于導抗變換器的并網(wǎng)逆變器拓撲結構,相比于傳統(tǒng)電流型逆變器,本拓撲省去了笨重的電抗器,同時利用高頻變壓器進行能量傳遞和電氣隔離,進一步降低了系統(tǒng)損耗和體積,降低系統(tǒng)成本。 經(jīng)研究發(fā)現(xiàn),由于導抗變換器的固有特性,采用傳統(tǒng)的SPWM調制方法將導致并網(wǎng)逆變器輸出平頂飽和的非正弦電流,造成對電網(wǎng)的諧波污染,提出了一種新型改進調制模式。該方法可以實現(xiàn)高功率因數(shù)、低諧波并網(wǎng)發(fā)電。根據(jù)上述理論分析,研制了一臺3kW單相光伏并網(wǎng)逆變器,實驗結果驗證了理論分析的正確性。 研究了一種三相電流型并網(wǎng)逆變器拓撲結構及其控制方法,采用改進調制模式對其進行控制,在諧波抑制方面取得了滿意的效果。提出的三相并網(wǎng)逆變方案,相比于傳統(tǒng)三相并網(wǎng)逆變器,具有如下顯著優(yōu)點:系統(tǒng)中任意一相都是一個獨立的子系統(tǒng),不受其它相影響,即使在某一相或某兩相損壞的情況下,剩余相也能正常運行,增加了系統(tǒng)的冗余性;在三相電網(wǎng)不平衡情況下,本方法也能提供穩(wěn)定的三相電流,增加系統(tǒng)抗電網(wǎng)波動能力。初看起來本方案使用的導抗變換器和變壓器有3套,但是每相承受的功率容量只有系統(tǒng)總功率的三分之一,這樣可以選用較小容量的器件,有利于高頻電感和變壓器的制作和生產。提出了一種基于導抗變換器的三相電流型逆變器實現(xiàn)方案,利用導抗變換器將輸入直流電壓變換為高頻正弦電流,經(jīng)高頻變壓器隔離及電流等級變換后進行裂相調制,輸出為三相正弦電流。該方法不僅省去了傳統(tǒng)電流型逆變器直流側電抗器,而且采用高頻變換進行功率傳輸,減小了隔離變壓器及輸出濾波器的體積,有利于裝置的小型化和降低成本。 針對光伏電池輸出電壓較低的問題,研究了一種單級式三相升壓型并網(wǎng)逆變器,通過一級變換同時實現(xiàn)升壓和DC/AC變換功能,并且提出了一種基于DSP芯片的控制策略,本方法僅用一個電壓傳感器就能替代原先的三個電壓傳感器:每個載波周期短路相只進行一次開關動作,同時任何時刻只有2個開關管導通,可有效降低系統(tǒng)的開關損耗和導通損耗;由于采用DSP控制,具有控制靈活、穩(wěn)定性高、成本低、并網(wǎng)電能質量好,便于功率調節(jié)等優(yōu)點。 提出了一種光伏并網(wǎng)與有源濾波兼用的統(tǒng)一控制策略,在同一套裝置上既實現(xiàn)光伏并網(wǎng)發(fā)電,又實現(xiàn)諧波補償,克服目前的光伏發(fā)電裝置白天發(fā)電、夜間停機的不足,提高系統(tǒng)利用率。詳細分析了無功電流和諧波電流的檢測方法、光伏并網(wǎng)發(fā)電有功指令電流的生成方法及電流環(huán)控制器和電壓環(huán)控制器的設計方法,并對光伏并網(wǎng)發(fā)電與有源濾波統(tǒng)一控制模式和單一有源濾波模式進行了討論,仿真和實驗結果驗證了所提出的系統(tǒng)結構及控制策略的正確性和可行性。
標簽: 光伏發(fā)電系統(tǒng) 逆變 技術研究
上傳時間: 2013-04-24
上傳用戶:dancnc
溫室是設施農業(yè)的重要組成部分,國內外溫室種植業(yè)的實踐經(jīng)驗表明,提高溫室的自動控制和管理水平可充分發(fā)揮溫室農業(yè)的高效性。隨著傳感技術,計算機技術及通訊技術的迅猛發(fā)展,現(xiàn)代化溫室信息自動采集及智能控制系統(tǒng)的開發(fā)已越來越引起人們的重視,并成為一個具有重要意義的研究方向。因此設計了基于PIC單片機的溫室自動控制系統(tǒng),使其對溫室環(huán)境進行控制,為植物創(chuàng)造適宜的生長條件,從而使農作物獲得高產,提高農業(yè)生產的經(jīng)濟效益。 文中論述了國內外溫室環(huán)境控制技術的發(fā)展及現(xiàn)狀,分析了溫室的內部機理,給出了所采用的溫室小氣候溫濕度模型;通過對溫室環(huán)境歷史數(shù)據(jù)的分析,得出了溫室溫度控制系統(tǒng)的近似數(shù)學模型。 系統(tǒng)采用模糊控制算法實現(xiàn)對溫濕度的控制。詳細研究了模糊控制的機理,建立了針對幾種執(zhí)行機構的模糊控制規(guī)則表;在模糊推理中采用了T-S模型的推理方法,此方法確定的控制規(guī)則工程意義明確,易于調整。并以溫度控制系統(tǒng)為對象,使用MATLAB對模糊算法進行仿真;仿真結果表明,這種算法具有超調量小、穩(wěn)定性強、適應性好等特點,能夠達到預期的控制效果,是一種較為理想的智能控制方案。 溫室自動控制系統(tǒng)的硬件部分由上位機和下位機及其外圍電路組成。上位機采用PC機,通過與下位機間的通信實現(xiàn)對溫室的統(tǒng)一管理;下位機及其外圍電路實現(xiàn)溫室環(huán)境參數(shù)的檢測、顯示和實時控制,微處理器采用的是PIC16F877A單片機。這種以單片機為核心的控制器還可以在不依賴上位機的情況下獨立實現(xiàn)參數(shù)的測控。 在軟件設計方面,將模糊控制算法引入其中,給出了主程序、模糊算法程序、通信程序等程序流程圖。使用MSComm控件實現(xiàn)上下位機間通信;并采用VB6.0對上位機界面進行了設計,使程序簡單、清晰、為用戶提供了直觀友好的管理平臺。整個系統(tǒng)軟硬件搭配合理,設計、開發(fā)、維護方便,具有較高的性價比。
上傳時間: 2013-07-21
上傳用戶:xz85592677
全功能交通燈設計+智能交通燈 全功能交通燈設計+智能交通燈
上傳時間: 2013-06-19
上傳用戶:xg262122
基于CMOS攝像頭的智能尋跡車的設計與實現(xiàn)
上傳時間: 2013-07-28
上傳用戶:kkchan200
工業(yè)生產過程往往具有非線性、不確定性,難以建立精確的數(shù)學模型。應用常規(guī)的PID控制器難以達到理想的控制效果。作為的重要分支,人工神經(jīng)網(wǎng)絡具有良好的非線性映射能力和高度的并行信息處理能力,已成為非線性系統(tǒng)建模、辨識和控制中常用的理論和方法。其中,神經(jīng)元具有很強的信息綜合、學習記憶、自學習和自適應能力,可以處理那些難以用模型和規(guī)則描述的過程,將神經(jīng)元與PID結合,應用到實際的控制中,可以在線調整PID的參數(shù),使系統(tǒng)具有較強的抗干擾能力、自適應能力和較好的魯棒性。 目前,人工神經(jīng)網(wǎng)絡的研究主要是神經(jīng)網(wǎng)絡的理論研究、神經(jīng)網(wǎng)絡的應用研究和神經(jīng)網(wǎng)絡的實現(xiàn)技術研究,這三方面是相互依賴和相互促進的關系。本文主要側重的是神經(jīng)網(wǎng)絡的實現(xiàn)技術研究方面,創(chuàng)新性地利用FPGA嵌入式系統(tǒng)開發(fā)技術實現(xiàn)單神經(jīng)元PID智能控制器的研究與設計,并將其封裝成為一個專用的IP核供其他的控制系統(tǒng)使用。 首先,對單神經(jīng)元PID智能控制器的設計原理和設計算法進行了深入的研究與分析;其次,利用MATLAB設計單神經(jīng)元PID智能控制器,針對特定的被控對象,對其進行仿真實驗,獲得比較理想的系統(tǒng)輸出;然后,研究基于FPGA的單神經(jīng)元智能控制算法的實現(xiàn),對控制器進行VHDL語言分層設計,使用Altera公司的軟件QuartusⅡ6.1進行仿真實驗。兩個仿真實驗結果表明,基于FPGA的單神經(jīng)元智能控制器比MATLAB設計的單神經(jīng)元PID智能控制器性能優(yōu)良。 本文的設計模塊主要包括權值修改模塊、誤差計算模塊、權值產生模塊和輸出模塊。在各個模塊的設計中進行了優(yōu)化處理,使本文的設計不僅利用的硬件資源少,而且也有很快的運行速度,同時也改善了傳統(tǒng)控制器的控制性能。
上傳時間: 2013-04-24
上傳用戶:13517191407
隨著社會的發(fā)展,人們對電力需求特別是電能質量的要求越來越高。但由于非線性負荷大量使用,卻帶來了嚴重的電力諧波污染,給電力系統(tǒng)安全、穩(wěn)定、高效運行帶來嚴重影響,給供用電設備造成危害。如何最大限度的減少諧波造成的危害,是目前電力系統(tǒng)領域極為關注的問題。諧波檢測是諧波研究中重要分支,是解決其它相關諧波問題的基礎。因此,對諧波的檢測和研究,具有重要的理論意義和實用價值。 目前使用的電力系統(tǒng)諧波檢測裝置,大多基于微處理器設計。微處理器是作為整個系統(tǒng)的核心,它的性能高低直接決定了產品性能的好壞。而這種微處理器為主體構成的應用系統(tǒng),存在效率低、資源利用率低、程序指針易受干擾等缺點。由于微電子技術的發(fā)展,特別是專用集成電路ASIC(ApplicationSpecificIntegratedCircuit)設計技術的發(fā)展,使得設計電力系統(tǒng)諧波檢測專用的集成電路成為可能,同時為諧波檢測裝置的硬件設計提供了一個新的發(fā)展途徑。本文目標就是設計電力系統(tǒng)諧波檢測專用集成電路,從而可以實現(xiàn)對電力系統(tǒng)諧波的高精度檢測。采用專用集成電路進行諧波檢測裝置的硬件設計,具有體積小,速度快,可靠性高等優(yōu)點,由于應用范圍廣,需求量大,電力系統(tǒng)諧波檢測專用集成電路具有很好的應用前景。 本文首先介紹了國內外現(xiàn)行諧波檢測標準,調研了電力系統(tǒng)諧波檢測的發(fā)展趨勢;隨后根據(jù)裝置的功能需求,特別是依據(jù)其中諧波檢測國標參數(shù)的測量算法,為系統(tǒng)選定了基于FPGA的SOPC設計方案。 本文分析了電力系統(tǒng)諧波檢測專用集成電路的功能模型,對專用集成電路進行了模塊劃分。定義了各模塊的功能,并研究了模塊間的連接方式,給出了諧波檢測專用集成電路的并行結構。設計了基于FPGA的諧波檢測專用集成電路設計和驗證的硬件平臺。配合專用集成電路的電子設計自動化(EDA)工具構建了智能監(jiān)控單元專用集成電路的開發(fā)環(huán)境。 在進行FPGA具體設計時,根據(jù)待實現(xiàn)功能的不同特點,分為用戶邏輯區(qū)域和Nios處理器模塊兩個部分。用戶邏輯區(qū)域控制A/D轉換器進行模擬信號的采樣,并對采樣得到的數(shù)字量進行諧波分析等運算。然后將結果存入片內的雙口RAM中,等待Nios處理器的訪問。Nios處理器對數(shù)據(jù)處理模塊的結果進一步處理,得到其各自對應的最終值,并將結果通過串行通信接口發(fā)送給上位機。 最后,對設計實體進行了整體的編譯、綜合與優(yōu)化工作,并通過邏輯分析儀對設計進行了驗證。在實驗室條件下,對監(jiān)測指標的運算結果進行了實驗測量,實驗結果表明該監(jiān)測裝置滿足了電力系統(tǒng)諧波檢測的總體要求。
標簽: FPGA 電力系統(tǒng) 諧波檢測
上傳時間: 2013-04-24
上傳用戶:yw14205