在電源設(shè)計(jì)中,工程人員時(shí)常會(huì)面臨控制 IC 驅(qū)動(dòng)電流不足的問題,或者因?yàn)殚l極驅(qū)動(dòng)損耗導(dǎo)致控制 IC 功耗過大。為解決這些問題,工程人員通常會(huì)採用外部驅(qū)動(dòng)器。目前許多半導(dǎo)體廠商都有現(xiàn)成的 MOSFET 積體電路驅(qū)動(dòng)器解決方案,但因?yàn)槌杀究剂浚こ處熗鶗?huì)選擇比較低價(jià)的獨(dú)立元件。
The Philips family of Multiplexers and Switches consists of bi-directional translating switches controlled via the I2C or SMBus to fan out an upstream SCL/SDA pair to 2, 4 or 8 downstream channels of SCx/SDx pairs. The Multiplexers allow only one downstream channel to be selected at a time, while the Switches allow any individual downstream channel or combination of downstream channels to be selected, depending on the content of the programmable control register. Once one or several channels have been selected, the device acts as a wire, allowing the master on the upstream channel to send commands to devices on all the active downstream channels, and devices on the active downstream channels to communicate with each other and the master. External pull-up resistors are used to pull each individual channel up to the desired voltage level. Combined interrupt output and hardware reset input are device options that are featured.
特點(diǎn) 精確度0.1%滿刻度 ±1位數(shù) 可量測 交直流電流/交直流電壓/電位計(jì)/傳送器/Pt-100/荷重元/電阻 等信號 顯示范圍-1999-9999可任意規(guī)劃 具有異常值與異常次數(shù)記錄保留功能 異常信號過高或過低或范圍內(nèi)或范圍外檢測可任意設(shè)定 報(bào)警繼電器復(fù)歸方式可任意設(shè)定 尺寸小,穩(wěn)定性高 2.主要規(guī)格 精確度: 0.1% F.S. ±1 digit 0.2% F.S. ±1 digit(AC) 取樣時(shí)間: 16 cycles/sec. 顯示值范圍: -1999 - +9999 digit adjustable 啟動(dòng)延遲動(dòng)作時(shí)間: 0-99.9 second adjustable 繼電器延遲動(dòng)作時(shí)間: 0-99.9 second adjustable 繼電器復(fù)歸方式: Manual (N) / latch(L) can be modified 繼電器動(dòng)作方向: HI /LO/GO/HL can be modified 繼電器容量: AC 250V-5A, DC 30V-7A 過載顯示: "doFL" 溫度系數(shù): 50ppm/℃ (0-50℃) 顯示幕: Red high efficiency LEDs high 14.22mm(.56")(PV) Red high efficiency LEDs high 7.0mm(.276")(NO) 參數(shù)設(shè)定方式: Touch switches 記憶型式 : Non-volatile E2PROM memory 絕緣耐壓能力: 2KVac/1 min. (input/output/power) 1600Vdc(input/output 使用環(huán)境條件 : 0-50℃(20 to 90% RH non-condensed) 存放環(huán)境條件: 0-70℃(20 to 90% RH non-condensed) CE認(rèn)證: EN 55022:1998/A1:2000 Class A EN 61000-3-2:2000 EN 61000-3-3:1995/A1:2001 EN 55024:1998/A1:2001
Single-Ended and Differential S-Parameters
Differential circuits have been important incommunication systems for many years. In the past,differential communication circuits operated at lowfrequencies, where they could be designed andanalyzed using lumped-element models andtechniques. With the frequency of operationincreasing beyond 1GHz, and above 1Gbps fordigital communications, this lumped-elementapproach is no longer valid, because the physicalsize of the circuit approaches the size of awavelength.Distributed models and analysis techniques are nowused instead of lumped-element techniques.Scattering parameters, or S-parameters, have beendeveloped for this purpose [1]. These S-parametersare defined for single-ended networks. S-parameterscan be used to describe differential networks, but astrict definition was not developed until Bockelmanand others addressed this issue [2]. Bockelman’swork also included a study on how to adapt single-ended S-parameters for use with differential circuits[2]. This adaptation, called “mixed-mode S-parameters,” addresses differential and common-mode operation, as well as the conversion betweenthe two modes of operation.This application note will explain the use of single-ended and mixed-mode S-parameters, and the basicconcepts of microwave measurement calibration.