亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

測量儀器

  • 大功率DCDC變換器ARM控制系統(tǒng)及EMC的研究.rar

    本文對燃料電池車用DC/DC變換器的基本原理以及控制策略進行了較為詳盡的分析和討論,對基于ARM的DC/DC變換器控制系統(tǒng)的軟硬件設(shè)計作了較為詳盡的論述,對控制系統(tǒng)的電磁兼容作了詳細的研究并給出了提高電磁兼容能力的措施。本文介紹了本課題研究的背景,燃料電池電動汽車的特性和研究的目的與意義并分析了大功率DC/DC變換器主電路的拓撲結(jié)構(gòu)、工作原理和電磁兼容環(huán)境。在此基礎(chǔ)上,從控制電路的最小系統(tǒng)、檢測系統(tǒng)、脈沖發(fā)生系統(tǒng)以及驅(qū)動電路、CAN通訊電路等方面重點討論了DC/DC變換器控制系統(tǒng)的硬件設(shè)計以及驅(qū)動電路的設(shè)計。本文在DC/DC變換器電感電流連續(xù)狀態(tài)空間小信號數(shù)學(xué)模型的基礎(chǔ)上,應(yīng)用MATLAB軟件對大功率DC/DC變換器單環(huán)控制系統(tǒng)進行了建模和仿真分析,給出了具有實際指導(dǎo)意義的結(jié)論,設(shè)計了基于ARM控制系統(tǒng)的軟件結(jié)構(gòu)并編寫了相應(yīng)的軟件代碼。此外,本文從硬件和軟件兩個方面重點討論了控制系統(tǒng)的電磁兼容以及抗干擾措施。在系統(tǒng)硬件和軟件基礎(chǔ)上進行了功率試驗并給出了試驗結(jié)果以及今后改進的方向。

    標(biāo)簽: DCDC ARM EMC

    上傳時間: 2013-05-28

    上傳用戶:思琦琦

  • MSP430寄存器(精).rar

    MSP430寄存器(精)

    標(biāo)簽: MSP 430 寄存器

    上傳時間: 2013-06-14

    上傳用戶:fujun35303

  • 電動汽車用DCDC變換器主電路拓撲結(jié)構(gòu)及電磁干擾的研究.rar

    本論文主要針對燃料電池電動轎車FCEV(Fuel Cell Electrical Vehicle)用DC/DC變換器主電路拓撲結(jié)構(gòu)及電磁干擾產(chǎn)生與抑制問題進行研究.針對燃料電池偏軟的輸出特性和電動汽車對DC/DC變換器的體積小、重量輕和效率高的要求,本論文分析比較了帶變壓器的隔離式直流變換器和非隔離式直流變換器的主要優(yōu)點和缺點,指出隔離式變換電路不適合于FCEV用DC/DC變換器主電路,非隔離式降壓(Buck)電路是最佳的主電路方案.在此基礎(chǔ)上,分析了非隔離式降壓(Buck)電路的工作原理和特點,運用模擬仿真軟件PSPICE仿真分析了Buck主電路參數(shù),并在分析比較了各種磁性材料特性的基礎(chǔ)上對電感器進行了優(yōu)化設(shè)計.本論文深入討論了DC/DC變換器中構(gòu)成電磁干擾的三個主要因素:電磁干擾源、傳播途徑和敏感設(shè)備.分析了DC/DC變換器主電路中存在的主要干擾源及干擾產(chǎn)生的機理以及干擾傳播途徑,在此基礎(chǔ)上,重點討論了抑制各種干擾的方法及措施(包括傳導(dǎo)干擾抑制與輻射干擾抑制等),并給出了具體方案.本論文還從電磁兼容(EMC)測試的目的、組成等方面出發(fā),對整個EMC測試進行了詳細的分析,提出了基于汽車電子EMC測試標(biāo)準(zhǔn)的DC/DC變換器EMC測試大綱,并對其中的試驗項目、試驗儀器、試驗場地、試驗設(shè)置、所應(yīng)達到的等級進行了詳細的分析和介紹.

    標(biāo)簽: DCDC 電動汽車 變換器

    上傳時間: 2013-08-03

    上傳用戶:20160811

  • 隔離升壓全橋DCDC變換器拓撲理論和控制技術(shù)研究.rar

    隔離升壓DC-DC變換器在電動汽車、儲能系統(tǒng)、可再生能源發(fā)電以及超導(dǎo)儲能系統(tǒng)等領(lǐng)域有廣闊的應(yīng)用前景。本文以隔離升壓全橋變換器(Isolated Boost Full Bridge Converter,簡稱IBFBC)為研究對象,針對隔離升壓型變換器的拓撲結(jié)構(gòu)、起動問題、隔離變壓器漏感問題、軟開關(guān)問題和輸入電感磁復(fù)位問題等進行了系統(tǒng)深入的研究,解決了這一類拓撲所共有技術(shù)問題。 提出了隔離升壓DC-DC變換器拓撲族,分析比較了各種拓撲的特點,確定了以IBFBC為研究對象。對IBFBC進行了詳細的穩(wěn)態(tài)分析和小信號建模分析,為其分析、設(shè)計和搭建實驗平臺提供了電路理論基礎(chǔ)。 理論上分析了IBFBC起動時存在電流沖擊的原因。提出了二種數(shù)字化軟起動方案,該方案對主電路進行了改造,利用DSP能靈活產(chǎn)生PWM波的特點采用了新的控制策略,成功實現(xiàn)了該系統(tǒng)的軟起動。 理論上分析了IBFBC隔離變壓器漏感引起功率開關(guān)管關(guān)斷電壓尖峰的原因,采用了有源箝位的方法,有效的解決電壓尖峰問題。提出了帶有源箝位IBFBC的九種PWM控制策略,提出了一種控制型軟PWM方法,在不增加主電路元器件的基礎(chǔ)上,通過控制PWM的發(fā)生方法,實現(xiàn)了有源箝位功率開關(guān)管和橋臂功率開關(guān)管的零電壓開通。 從理論上分析了IBFBC輸入電感磁復(fù)位問題。在正常停機時提出了一種數(shù)字化軟停止的方法,控制變換器由Boost工作狀態(tài)逐漸過渡到Buck工作狀態(tài),讓輸入電感存儲的能量逐漸釋放掉,最后停止工作。對于故障保護停機,采用了繞組磁復(fù)位的方法,把輸入電感設(shè)計成反激式變換器形式,突然停機時,電感中存儲的能量通過反激式繞組釋放到輸出端,這樣保護了變換器不會損壞。 給出了主電路關(guān)鍵器件參數(shù)的設(shè)計方法,設(shè)計了以DSP-TMS320F2407為核心的數(shù)字控制單元,編寫了DSP控制程序和CPLD邏輯處理程序。研制了一臺輸出功率5KW,輸入電壓直流24V,輸出電壓直流300V的IBFBC,通過全面的性能實驗驗證了理論分析和仿真結(jié)果。 本文立足于IBFBC的關(guān)鍵技術(shù)要求,并充分考慮工程應(yīng)用中的實際因素,進行了理論分析和實驗研究,為實際系統(tǒng)方案設(shè)計提供理論依據(jù),并已經(jīng)在實際應(yīng)用中得到驗證。

    標(biāo)簽: DCDC 隔離 升壓

    上傳時間: 2013-04-24

    上傳用戶:lifevast

  • 車用DCDC變換器主電路及其電磁兼容性研究.rar

    近年來,隨著汽車工業(yè)的迅速發(fā)展,環(huán)境污染、全球變暖、能源短缺的壓力使傳統(tǒng)的內(nèi)燃機汽車面臨前所未有的挑戰(zhàn),燃料電池電動汽車已成為汽車工業(yè)新的熱點。由于燃料電池輸出特性的特殊性,輸出端必須連接DC/DC變換器,使之與驅(qū)動器配合。因此,DC/DC變換器是燃料電池電動汽車的關(guān)鍵零部件之一。 本論文主要對燃料電池電動轎車FCEV(Fuel Cell Electric Vehicle)用DC/DC變換器的主電路拓撲結(jié)構(gòu)、參數(shù)設(shè)計及電磁兼容(EMC)問題進行了研究。重點針對升降壓和雙向DC/DC變換器進行分析研究。 首先介紹分析了幾種傳統(tǒng)升降壓直流變換器的工作原理和優(yōu)缺點。針對燃料電池的特性和電動汽車對升降壓DC/DC變換器的性能指標(biāo)要求,分析比較了非隔離式直流變換器的一些優(yōu)點和缺點,提出了Buck-Boost級聯(lián)的升降壓主電路方案并提出相關(guān)的控制策略。然后運用模擬仿真軟件MATLAB仿真分析了控制策略的正確性。 其次分析研究了雙向DC/DC變換器的應(yīng)用與設(shè)計,綜合比較現(xiàn)有的各種隔離與非隔離方案,結(jié)合車用要求,選擇了非隔離式的Buck-Boost拓撲。針對其工作原理、特點進行了雙向DC/DC變換器主電路與控制電路的設(shè)計研究,重點研究其過渡過程的控制策略。在利用MATLAB進行各種過渡過程的仿真分析的基礎(chǔ)上,選取了最佳的過渡控制方案。并利用該控制策略編制DSP控制程序,制作了小功率1kW數(shù)字控制雙向DC/DC變換器。 最后深入討論了DC/DC變換器中的電磁兼容問題。分析了DC/DC變換器主電路中存在的主要干擾源、干擾產(chǎn)生的機理以及干擾傳播途徑,然后以此出發(fā),重點討論了各種抑制電磁騷擾(EMI)和電磁抗干擾(EMS)的方法及措施,給出具體方案。

    標(biāo)簽: DCDC 車用 變換器

    上傳時間: 2013-05-24

    上傳用戶:hanli8870

  • 自制串口下載器,欺騙ICCAVR,取代STK500.rar

    自制串口下載器,欺騙ICCAVR,取代STK500

    標(biāo)簽: ICCAVR 500 STK

    上傳時間: 2013-04-24

    上傳用戶:lw852826

  • 24位模數(shù)轉(zhuǎn)換器ADS1216.rar

    新型8 通道24 位模數(shù)轉(zhuǎn)換器ADS1216 及其應(yīng)用

    標(biāo)簽: 1216 ADS 24位

    上傳時間: 2013-04-24

    上傳用戶:lmeeworm

  • 車用雙向DCDC變換器的快速響應(yīng)特性研究.rar

    近年來,由于能源危機和環(huán)境污染,世界各國均在投巨資發(fā)展燃料電池汽車。雙向DC/DC變換器作為燃料電池汽車的中重要部件,需要隨著行駛狀態(tài)的改變,頻繁地切換其工作狀態(tài),其動態(tài)性能好壞,直接決定汽車動力系統(tǒng)的響應(yīng)速度。本文主要致力于對DC/DC變換器在不同控制策略下的動態(tài)性能進行研究,并在保證其穩(wěn)態(tài)性能的前提下提高系統(tǒng)動態(tài)性能。 本文首先研究了線性控制策略下DC/DC變換器的動態(tài)性能。介紹了閉環(huán)控制系統(tǒng)在頻域和時域的動態(tài)性能指標(biāo)以及二者之間的關(guān)系。當(dāng)系統(tǒng)受到外部干擾較小時,采用頻域分析方法,對Buck和Boost變換器進行了小信號建模,并對其在不同線性補償網(wǎng)絡(luò)控制作用下的動態(tài)性能進行對比分析。當(dāng)系統(tǒng)受到較大干擾時,采用時域分析方法,文中介紹了DC/DC變換器大信號建模方法,并對PID參數(shù)在工程上整定方法加以分析。 DC/DC變換器是一非線性系統(tǒng),應(yīng)用線性控制策略不可避免地存在一定局限性—動態(tài)性能和穩(wěn)態(tài)性能之間的矛盾。針對這一問題,引入了模糊—PI控制,將其應(yīng)用于DC/DC變換器,以在保持系統(tǒng)穩(wěn)態(tài)性能不變的前提下,提高其動態(tài)性能。以Buck DC/DC變換器為例,詳細介紹了模糊-PI控制器的設(shè)計過程,并對設(shè)計的閉環(huán)控制系統(tǒng)用MATLAB進行建模與仿真。最后,通過實驗對比驗證了模糊—PI控制的有效性。 和線性控制策略相比,模糊—PI控制在一定程度上提高了系統(tǒng)的動態(tài)性能,但效果有限。本文引入了另一種非線性控制策略——滑模控制策略。滑模控制策略是目前動態(tài)性能最好的控制策略之一,可以極佳地發(fā)揮系統(tǒng)的硬件潛能。 本文首先介紹了滑模控制相關(guān)知識,推導(dǎo)了其應(yīng)用于Buck和Boost變換器的理論基礎(chǔ)。設(shè)計出針對不同被控對象和工作狀態(tài)的控制策略,對每種控制策略通過仿真分析驗證其有效性。就滑模控制存在的靜差問題、抖振問題和變頻問題均提出了行之有效的解決方案。快速響應(yīng)特性

    標(biāo)簽: DCDC 車用 變換器

    上傳時間: 2013-08-01

    上傳用戶:yw14205

  • 鋼鐵企業(yè)用靜止無功補償器(SVC)的結(jié)構(gòu)設(shè)計與參數(shù)研究.rar

    對供電系統(tǒng)進行適當(dāng)?shù)臒o功補償,可以穩(wěn)定電網(wǎng)電壓,提高功率因數(shù),提高設(shè)備利用率,減小網(wǎng)絡(luò)有功功率損耗,提高輸電能力,平衡三相功率,為系統(tǒng)提供電壓支撐,提高系統(tǒng)運行安全性。鋼鐵企業(yè)一直就是用電大戶,具有容量大、負荷沖擊大、起制動頻繁、快速性、工作連續(xù)性和自動化程度高等特點,存在功率因數(shù)低、電壓波動等問題。研究鋼鐵企業(yè)的無功補償,對企業(yè)提高供電可靠性,節(jié)能減排,降低損耗,提高用電設(shè)備效率,保證產(chǎn)品質(zhì)量有著非常重要的意義。 本文選用目前工程上應(yīng)用最為廣泛的動態(tài)補償裝置靜止無功功率補償器,即SVC對鋼鐵企業(yè)負荷進行無功補償。考察了軋鋼企業(yè)的負荷特點,對比了各種補償裝置的優(yōu)缺點,在此基礎(chǔ)上提出了FC—TCR型SVC做為鋼鐵企業(yè)的無功補償裝置。 本文根據(jù)特定的現(xiàn)場參數(shù),提出了FC—TCR型SVC裝置的設(shè)計框架,建立了潮流計算和SVC裝置的數(shù)學(xué)模型,給出了含有SVC補償裝置的電力系統(tǒng)潮流計算的計算方法,計算了SVC裝置的FC和TCR各支路參數(shù),對一次設(shè)備進行選型,最后提出了一套完整的SVC系統(tǒng)設(shè)計方案。仿真結(jié)果表明,采用本方案的SVC系統(tǒng)有效提高了供電系統(tǒng)的功率因數(shù),抑制了電壓波動,表明方案設(shè)計中的支路配置,參數(shù)設(shè)置和設(shè)備選型是合理的。 從基于瞬時無功功率理論的補償裝置觸發(fā)角度的算法出發(fā),研究了SVC裝置動態(tài)補償?shù)膶崿F(xiàn)方法。本文還提出了動態(tài)補償SVC監(jiān)控系統(tǒng)和晶閘管觸發(fā)系統(tǒng)的硬件實現(xiàn)。 為了驗證SVC系統(tǒng)設(shè)計的合理性,搭建了SVC的模擬試驗平臺,對一次系統(tǒng),監(jiān)控系統(tǒng),光電觸發(fā)系統(tǒng)進行了聯(lián)合調(diào)試,調(diào)試結(jié)果達到了設(shè)計預(yù)期目標(biāo)。

    標(biāo)簽: SVC 無功補償 參數(shù)

    上傳時間: 2013-06-23

    上傳用戶:xiaohuanhuan

  • SVPWM逆變器過調(diào)制策略對交流電機動態(tài)性能影響的研究.rar

    隨著電力電子技術(shù)、微處理器技術(shù)以及控制技術(shù)的發(fā)展,基于轉(zhuǎn)子磁鏈定向的交流電機矢量控制系統(tǒng)以其優(yōu)良的性能受到了廣泛應(yīng)用。采用SVPWM逆變器的異步電動機矢量控制系統(tǒng)在轉(zhuǎn)速參考值變化或者負載轉(zhuǎn)矩參考值變化的動態(tài)情況下,參考電壓矢量可能會超出基本空間矢量構(gòu)成的正六邊形,此時便出現(xiàn)動態(tài)過調(diào)制,需要用過調(diào)制策略將超出的電壓矢量重新限定在正六邊形邊界內(nèi)。不同的過調(diào)制策略會給整個系統(tǒng)帶來不同的動態(tài)性能,本文在對過調(diào)制策略進行完善的基礎(chǔ)上,針對三種過調(diào)制策略對交流電動機動態(tài)性能的影響進行了研究,并對其機理進行了理論分析與探討。 @@ 本文首先以三相異步電動機在兩相靜止坐標(biāo)系下的動態(tài)方程為基礎(chǔ),按照轉(zhuǎn)子磁鏈定向,設(shè)計了轉(zhuǎn)子磁鏈觀測器,完成了勵磁電流分量和轉(zhuǎn)矩電流分量的解耦,并構(gòu)建了基于SVPWM的異步電動機矢量控制系統(tǒng)的MATLAB仿真模型。在矢量控制中,電流控制對系統(tǒng)性能具有重要影響。為了改善系統(tǒng)性能,所設(shè)計的矢量控制系統(tǒng)采用了同步電流控制,并對反電勢進行了前饋補償。 @@ 在分析了現(xiàn)有的三種過調(diào)制策略之后,對過調(diào)制策略進行了完善,并構(gòu)建了異步電動機矢量控制系統(tǒng)的過調(diào)制仿真模型。過調(diào)制中,當(dāng)原參考電壓矢量位于正六邊形中任意兩個扇區(qū)交界附近時,過調(diào)制策略2和3所得到的新電壓矢量仍會超出正六邊形邊界,過調(diào)制算法不再適用于此區(qū)域。針對以上不足,本文對過調(diào)制策略2和3進行了完善,使過調(diào)制算法適用于所有區(qū)域。采用完善后的過調(diào)制策略對轉(zhuǎn)速參考值變化和負載轉(zhuǎn)矩參考值變化的異步電動機矢量控制系統(tǒng)進行仿真,發(fā)現(xiàn)在加速與加載的條件下,過調(diào)制策略2的動態(tài)性能好于過調(diào)制策略1,而過調(diào)制策略3的動態(tài)性能最佳,具有最小的動態(tài)響應(yīng)時間,暫態(tài)性能優(yōu)良;在減載的條件下,過調(diào)制策略1和2能夠很快的進入穩(wěn)定狀態(tài),但是過調(diào)制策略3卻出現(xiàn)問題,動態(tài)響應(yīng)時間很長,說明此策略具有一定的局限性。 @@ 本文深入探討了三種過調(diào)制策略導(dǎo)致不同動態(tài)性能的內(nèi)在機理,通過對三種過調(diào)制策略中電壓矢量的幅值和相位進行分析,理論上解釋了出現(xiàn)不同動態(tài)響應(yīng)時間的原因。出現(xiàn)過調(diào)制時,過調(diào)制策略2中新電壓矢量的幅值總是大于過調(diào)制策略1中新電壓矢量的幅值,所以動態(tài)性能更好。在加速和加 載條件下,過調(diào)制策略3中新電壓矢量的相位總是超前于過調(diào)制策略1和2中新電壓矢量的相位,因此可以獲得更快的動態(tài)響應(yīng),暫態(tài)性能更佳。但是在減載條件下,過調(diào)制策略3中新電壓矢量與原電壓矢量間的相位關(guān)系處于無規(guī)律的超前滯后狀態(tài),導(dǎo)致過調(diào)制策略3出現(xiàn)問題,動態(tài)響應(yīng)時間很長,說明此過調(diào)制策略有其不足之處,有待于改進。@@關(guān)鍵詞:SVPWM;矢量控制;過調(diào)制;動態(tài)性能

    標(biāo)簽: SVPWM 逆變器 過調(diào)制

    上傳時間: 2013-06-27

    上傳用戶:nunnzhy

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
夜夜嗨av色综合久久久综合网| 狠狠色2019综合网| 欧美日韩在线一区| 亚洲美女精品一区| 久久一本综合频道| 亚洲国产精品999| 欧美伦理在线观看| 亚洲一区三区视频在线观看| 欧美日韩高清在线一区| 亚洲欧美视频在线观看| 樱花yy私人影院亚洲| 久久久水蜜桃| 1024欧美极品| 国产精品中文字幕欧美| 久久久最新网址| 一二美女精品欧洲| 亚洲国产成人久久| 国产嫩草一区二区三区在线观看| 久久综合中文字幕| 亚洲欧美久久| 亚洲理伦电影| 在线成人激情黄色| 国产精品一区二区久激情瑜伽| 免费成人av在线| 亚洲欧美日韩在线不卡| 日韩亚洲欧美一区二区三区| 狠狠网亚洲精品| 国产精品推荐精品| 国产精品日韩二区| 国产精品国内视频| 欧美无砖砖区免费| 欧美精品一区二区三区高清aⅴ| 久久久久久久尹人综合网亚洲| 午夜国产精品视频| 亚洲自拍偷拍福利| 亚洲一级片在线看| 性欧美精品高清| 午夜精品国产更新| 久久久久久婷| 欧美国产高清| 国产精品免费在线| 国产在线乱码一区二区三区| 国产精品视频专区| 欧美国产综合| 国产精品jizz在线观看美国| 欧美日韩国产综合网| 国产精品sss| 国产亚洲福利社区一区| 亚洲电影第三页| 亚洲一区二区三区777| 久久久久国产精品一区二区| 久久综合免费视频影院| 欧美日韩一区成人| 国产一区91| 亚洲一区免费在线观看| 久久综合给合| 国产精品美女久久久久久2018 | 欧美日韩一区在线观看| 欧美日本精品| 在线日韩欧美| 欧美一进一出视频| 欧美日韩另类综合| 1024国产精品| 久久se精品一区精品二区| 欧美日韩亚洲一区二区三区四区| 国产视频亚洲精品| 欧美母乳在线| 国产一区二区电影在线观看| 亚洲精品日韩久久| 女人色偷偷aa久久天堂| 国产亚洲亚洲| 久久久91精品国产| 国产伦精品一区二区三区视频孕妇| 亚洲电影自拍| 欧美日韩精品一区视频| avtt综合网| 国产视频精品xxxx| 欧美自拍偷拍午夜视频| 樱花yy私人影院亚洲| 欧美成人有码| 亚洲欧美日韩区| 在线免费观看日本一区| 欧美日韩一区二区在线| 亚洲无线一线二线三线区别av| 国产欧美激情| 欧美成人中文| 亚洲在线1234| 亚洲国产精品久久| 国产精品v日韩精品| 欧美视频在线观看视频极品| 亚洲婷婷在线| 亚洲人成人一区二区在线观看| 欧美精品麻豆| 母乳一区在线观看| 久久99在线观看| 亚洲视频精品在线| 在线成人亚洲| 国内一区二区三区在线视频| 欧美日本一区| 欧美激情aaaa| 欧美大片免费| 农村妇女精品| 欧美成ee人免费视频| 久久久免费精品视频| 午夜一区不卡| 性欧美精品高清| 亚洲欧美综合国产精品一区| 99精品福利视频| 中文国产亚洲喷潮| 亚洲在线第一页| 午夜精品视频网站| 欧美在线视频一区二区三区| 亚欧成人在线| 久久视频精品在线| 免费在线看成人av| 欧美日韩国产精品专区| 欧美视频中文一区二区三区在线观看 | 国产精品毛片a∨一区二区三区|国 | 亚洲国产精品一区二区www在线| 国产精品一区二区久久国产| 国产精一区二区三区| 国产一区视频网站| 亚洲美女淫视频| 亚洲欧美美女| 男人插女人欧美| 国产精品人人做人人爽 | 免费毛片一区二区三区久久久| 亚洲一区二区三区欧美| 久热精品视频在线观看| 欧美视频一区在线| 在线播放亚洲| 欧美体内she精视频| 国产精品丝袜久久久久久app| 国产日产欧美一区| 日韩一区二区精品在线观看| 久久riav二区三区| 国产精品白丝黑袜喷水久久久| 国内精品写真在线观看| 亚洲欧美日韩在线| 欧美日韩亚洲精品内裤| 一区二区三区中文在线观看| 亚洲婷婷在线| 久久成人这里只有精品| 欧美日韩三级视频| 亚洲国产精品精华液网站| 午夜天堂精品久久久久| 国产精品啊啊啊| 亚洲网在线观看| 国产精品xvideos88| 亚洲视频电影在线| 国产精品看片资源| 亚洲欧美日本在线| 国产一区二区黄色| 久久av资源网站| 加勒比av一区二区| 快播亚洲色图| 伊人久久久大香线蕉综合直播| 性做久久久久久免费观看欧美| 国产精品九九| 久久aⅴ国产欧美74aaa| 精品电影一区| 欧美视频官网| 久久国产免费看| 91久久久一线二线三线品牌| 欧美精品1区2区| 欧美在线观看视频一区二区三区 | 国产精品成人av性教育| 亚洲一区二区三区乱码aⅴ| 国产欧美精品一区aⅴ影院| 久久青草久久| 午夜精品久久久久久99热软件| 国产午夜亚洲精品不卡| 欧美日韩成人网| 嫩草成人www欧美| 久久久免费观看视频| 午夜日韩在线观看| 亚洲视频中文| 夜夜爽av福利精品导航| 亚洲电影中文字幕| 一区精品久久| 在线欧美不卡| 亚洲第一福利在线观看| 国产午夜精品全部视频播放| 欧美日韩一级大片网址| 免播放器亚洲一区| 国产精品福利在线观看网址| 亚洲人线精品午夜| 亚洲人成毛片在线播放| 永久91嫩草亚洲精品人人| 精品二区视频| 狠狠v欧美v日韩v亚洲ⅴ| 国产欧美日韩精品在线| 国产伦理一区| **欧美日韩vr在线| 中文成人激情娱乐网| 亚洲欧美激情在线视频| 欧美主播一区二区三区美女 久久精品人 | 国产日韩欧美精品综合| 国产精品永久免费在线| 国产日韩精品一区二区三区|