1.24位真彩色->256色灰度圖。
2.預處理:中值濾波。
3.二值化:用一個初始閾值T對圖像A進行二值化得到二值化圖像B。
初始閾值T的確定方法是:選擇閾值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分別是最高、最低灰度值。
該閾值對不同牌照有一定的適應性,能夠保證背景基本被置為0,以突出牌照區域。
4.削弱背景干擾。對圖像B做簡單的相鄰像素灰度值相減,得到新的圖像G,即Gi,j=|Pi,j-Pi,j-1|i=0,1,…,439 j=0,1,…,639Gi,0=Pi,0,左邊緣直接賦值,不會影響整體效果。
5.用自定義模板進行中值濾波
區域灰度基本被賦值為0。考慮到文字是由許多短豎線組成,而背景噪聲有一大部分是孤立噪聲,用模板(1,1,1,1,1)T對G進行中值濾波,能夠得到除掉了大部分干擾的圖像C。
6.牌照搜索:利用水平投影法檢測車牌水平位置,利用垂直投影法檢測車牌垂直位置。
7.區域裁剪,截取車牌圖像。
標簽:
Gmax-G
1.24
Gmax
閾值
上傳時間:
2014-01-08
上傳用戶:songrui
Floyd-Warshall算法描述
1)適用范圍:
a)APSP(All Pairs Shortest Paths)
b)稠密圖效果最佳
c)邊權可正可負
2)算法描述:
a)初始化:dis[u,v]=w[u,v]
b)For k:=1 to n
For i:=1 to n
For j:=1 to n
If dis[i,j]>dis[i,k]+dis[k,j] Then
Dis[I,j]:=dis[I,k]+dis[k,j]
c)算法結束:dis即為所有點對的最短路徑矩陣
3)算法小結:此算法簡單有效,由于三重循環結構緊湊,對于稠密圖,效率要高于執行|V|次Dijkstra算法。時間復雜度O(n^3)。
考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍色部分,可以更直觀地得到I,j的連通情況。
標簽:
Floyd-Warshall
Shortest
Pairs
Paths
上傳時間:
2013-12-01
上傳用戶:dyctj