亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

激波管

  • 高壓變頻器前側逆變晶閘管自供電驅(qū)動系統(tǒng)研究與設計.rar

    隨著電力電子技術的發(fā)展,高壓換流設備在工業(yè)應用中日益廣泛。其核心元件晶閘管(SCR)的電壓與電流越來越高(已達到10KV/10KA以上),應用場合要求也越來越高。在國際上,晶閘管的光控技術發(fā)展日益成熟。根據(jù)對國內(nèi)晶閘管技術發(fā)展前景和需求的展望,本文采用自供電驅(qū)動技術與光控技術相結合,研發(fā)光控自供電晶閘管驅(qū)動控制板,然后與晶閘管本體相結合即形成光控晶閘管工程化實現(xiàn)模型,其可作為光控晶閘管的替代技術。 在工程應用中,光控晶閘管的典型應用場合為四象限高壓變頻器和國家大型直流輸變電系統(tǒng)等。隨著國家節(jié)能工程的實施,高壓變頻器的應用范圍越來越廣泛,已成為工業(yè)節(jié)能中的重要環(huán)節(jié)。高壓直流換流系統(tǒng)難度大,技術復雜,要求高,本論文研究的光控晶閘管替代技術只作為其儲備技術之一。本論文以電流源型高壓變頻器作為該光控晶閘管替代技術的應用背景重點闡述。 電流源型高壓變頻器為了提高單機容量,通常是數(shù)個SCR串聯(lián)使用。隨著系統(tǒng)容量越來越大,裝置對高壓開關器件的要求也越來越高。如果一組串聯(lián)SCR中某一個SCR該導通時沒有導通,那么加在該組SCR上的電壓都將加到該SCR上形成過電壓,造成該器件的擊穿損壞,甚至于一組串聯(lián)SCR都被燒壞。為了克服上述問題,保證高壓變頻器中串聯(lián)晶閘管能夠安全可靠的工作,提高系統(tǒng)可靠性,有必要為晶閘管配備后備驅(qū)動系統(tǒng)。本文提出了給SCR驅(qū)動電路增設自供電驅(qū)動系統(tǒng)——SPDS (Self—Powered Drive System)的解決辦法。SPDS基本功能是通過高位取能電路利用RC緩沖電路中的能量為監(jiān)測電路和后備觸發(fā)電路提供正常工作所需要的能量。它的優(yōu)點是由于緩沖電路與晶閘管同電位,自供電驅(qū)動系統(tǒng)要求的電壓隔離水平可以從幾千伏降低到幾百伏,節(jié)省了高壓隔離變壓器,節(jié)省了成本和體積,提高了系統(tǒng)可靠性。國外對相關內(nèi)容已經(jīng)有了深入研究,并將其應用在高壓變頻器產(chǎn)品中。在國內(nèi),目前還沒有查到相關文獻。本文為基于晶閘管的電流源型高壓變頻器設計了一種高壓晶閘管自供電驅(qū)動系統(tǒng),填補了國內(nèi)空白,為自供電驅(qū)動系統(tǒng)的推廣應用和其他高壓開關器件自供電驅(qū)動系統(tǒng)的研制提供了參考。 本文詳細介紹了串聯(lián)高壓晶閘管驅(qū)動系統(tǒng)的要求和RC緩沖電路的工作特 點,進而提出了SPDS的工作原理和具體實現(xiàn)方式,闡述了SPDS各部分組成及其功能。SPDS的核心技術是取能回路和觸發(fā)方式的設計。本文在比較各種高壓取能方式和觸發(fā)方式優(yōu)缺點的基礎上,選擇采用RC緩沖取能方式和光纖觸發(fā)方式。 論文基于Multisim10仿真軟件,結合高壓晶閘管自供電驅(qū)動系統(tǒng)取能電路的原理,對高壓晶閘管自供電驅(qū)動系統(tǒng)的核心部分——SPDS取能電路進行了仿真。通過搭建帶SPDS取能電路的單相晶閘管仿真電路和電流源型高壓變頻器前側變流電路的仿真模型,詳細討論了影響RC取能回路正常工作的各種因素。同時,通過設定仿真電路的參數(shù),分析了其工作狀況。根據(jù)得到的仿真波形圖,證明了高壓晶閘管自供電驅(qū)動系統(tǒng)可以達到有效觸發(fā)晶閘管導通的設計目標,具有可行性。 為考察SPDS的實際工作性能,本文搭建了簡易的SPDS低壓硬件實驗平臺,為其高壓條件下的工程化應用打好了基礎。 在論文的最后,對高壓晶閘管自供電驅(qū)動系統(tǒng)的發(fā)展方向進行了展望。 關鍵詞:高壓變頻器;晶閘管驅(qū)動;自供電系統(tǒng);高壓換流;光控晶閘管

    標簽: 高壓變頻器 逆變 晶閘管

    上傳時間: 2013-05-26

    上傳用戶:riiqg1989

  • 基于DSP的三相混合式步進電動機正弦波細分驅(qū)動技術的研究.rar

    傳統(tǒng)開環(huán)運行的三相混合式步進電動機驅(qū)動系統(tǒng)中存在著振蕩和失步等不足之處。本文針對這種情況,通過對理想化三相混合式步進電動機數(shù)學模型的分析,把三相混合式步進電動機視為一種低速同步電動機。同時,結合電流跟蹤型PWM控制方式及恒流斬波驅(qū)動的工作原理,設計了基于數(shù)字信號處理器TMS320F2812的全數(shù)字三相混合式步進電動機正弦波細分驅(qū)動系統(tǒng)。 首先,本文從三相混合式步進電動機的數(shù)學模型出發(fā),對步進電動機的細分驅(qū)動方式進行了研究,分析了步進電動機連續(xù)均勻旋轉(zhuǎn)的工作機理。然后分析了步進電動機的運行特性及細分控制的必要性,進而分析了細分驅(qū)動對改善步進電動機運行性能的作用,并針對細分運行的一些不足之處,提出了均勻細分恒轉(zhuǎn)矩控制的方案。理論分析表明,在混合式步進電動機的三相定子繞組中通以互差120°的正弦波電流時,可得到類似同步機的轉(zhuǎn)矩特性,使電動機均勻旋轉(zhuǎn)。 本系統(tǒng)硬件電路以TMS320F2812為核心,采用正弦波細分和電流跟蹤型脈寬調(diào)制(PWM)技術實現(xiàn)三相混合式步進電動機的細分控制,使三相定子繞組電流嚴格跟蹤電流給定信號變化。應用IR公司的IR2130集成驅(qū)動芯片進行了步進電動機驅(qū)動系統(tǒng)的功率驅(qū)動環(huán)節(jié)的設計,節(jié)省了板上空間,減小了裝置體積。同時從裝置可靠性出發(fā),設計了一套安全可靠的硬件保護電路。 實驗結果表明,本文所設計的三相混合式步進電動機正弦波細分驅(qū)動器具有優(yōu)良的控制性能。細分運行時減弱了混合式步進電動機的低速振動和噪聲,使電動機運行平穩(wěn),并改善了其低頻運行性能。

    標簽: DSP 三相混合式 步進電動機

    上傳時間: 2013-06-27

    上傳用戶:ca05991270

  • 晶閘管投切電容器TSC中功率單元的研究.rar

    隨著低壓供電系統(tǒng)中感性負荷越來越多,電網(wǎng)對無功電流的需求量急劇增加,為了提高系統(tǒng)供電質(zhì)量和供電效率,必須對電網(wǎng)進行無功補償。晶閘管投切電容器(TSC)一種簡單易行的補償措施,并已得到廣泛應用。但是長期以來無功補償裝置中的電容器投切開關存在功能單一、使用壽命短、開關沖擊大等不足,這些不足嚴重制約了補償裝置的發(fā)展。因此開發(fā)大容量快速的集多種功能于一體的電子開關功率單元將是晶閘管投切電容器(TSC)技術中長期研究的主要內(nèi)容,具有很高的實用價值。 首先,本文回顧了投切開關的發(fā)展歷史,并指出它們存在的優(yōu)點和弊端。闡述了晶閘管投切電容器(TSC)的基本工作原理及主電路的組成和實現(xiàn)手段。 其次,提出功率單元的概念,并介紹了它的組成、功能和作用、對功率單元各個組成部分進行研究,主要包括根據(jù)系統(tǒng)電壓和電流選擇晶閘管型號、根據(jù)TSC無過渡過程原理的分析來設計過零觸發(fā)模塊、利用補償電容上的工作電壓波形設計多功能卡上的工作指示電路、故障檢測電路,根據(jù)TSC的保護特點將溫度開關串入到控制信號和冷卻風扇電路,在溫度過高時起到對功率單元的保護作用。然后在理論及設計參數(shù)的基礎上制造功率單元。在已有的TSC補償裝置上對功率單元的性能進行實驗,實驗結果表明,論文所設計功率單元能很好的實現(xiàn)投切電容器的作用,還實現(xiàn)各種保護和顯示功能,提高效率和補償效果。 最后,系統(tǒng)地闡述了功率單元作為集成化開關模塊在無功補償領域的優(yōu)越性,并指出設計中需要完善的地方。

    標簽: TSC 晶閘管 功率

    上傳時間: 2013-07-19

    上傳用戶:許小華

  • 工業(yè)變頻器高性能調(diào)制算法的研究.rar

    變頻器在各行各業(yè)中的各種設備上迅速普及應用,已成為當今節(jié)電、改造傳統(tǒng)工業(yè)、改善工藝流程、提高生產(chǎn)過程自動化水平、提高產(chǎn)品質(zhì)量以及推動技術進步的主要手段之一,是國民經(jīng)濟和生活中普遍需要的新技術。但是現(xiàn)有變頻器的調(diào)制算法尚存在一些缺點,如開關損耗大和共模電流大等,因此有必要研究和設計高性能調(diào)制算法的變頻控制器。鑒于此,開展了以下工業(yè)變頻器高性能調(diào)制算法為對象的研究內(nèi)容: 在闡述了工業(yè)變頻器系統(tǒng)的結構、調(diào)制算法、調(diào)速算法的基礎上,結合數(shù)學模型,分析了共模電壓產(chǎn)生的原理、共模電流其影響和危害,給出了共模電壓和共模電流的關系。總結其他的抑制共模電壓的方案基礎上,提出一種新的共模電壓抑制SVPWM;還闡述了死區(qū)產(chǎn)生的原因及其影響,以及死區(qū)補償?shù)脑聿⑸鲜鰞蓚€調(diào)制算法利用MATLAB/SIMULINK軟件對該系統(tǒng)給予了全面的仿真分析。 變頻器硬件部分設計包括整流濾波電路、逆變器功率電路、上電保護電路、DSP控制系統(tǒng)及其外圍電路、IGBT驅(qū)動及保護電路以及反激式開關電源,對于傳感器檢測濾波電路的具體電路參數(shù)設計,是在PSPICE上仿真基礎上得出。并在考慮成本、EMC、效率等因素后考慮完成了所有硬件相關的原理圖繪制和PCB繪制; 變頻器軟件部分設計包括主程序、鍵盤掃描程序、系統(tǒng)狀態(tài)處理程序、PWM發(fā)送中斷程序、電機啟動函數(shù)、電壓調(diào)整程序、AD采樣中斷程序以及故障保護中斷程序。在實現(xiàn)一般SVPWM的基礎上,根據(jù)之前理論和仿真得到的共模電壓抑制SVPWM、以及死區(qū)補償算法,將這兩個對SVPWM進行改進的調(diào)制算法在硬件平臺上實現(xiàn)。 在硬件電路完成設計的各個階段,逐漸編制相應的控制程序,并進行調(diào)試,并完成整個程序的編制和調(diào)試。此外,還調(diào)試了系統(tǒng)所需的反激式開關電源。整個系統(tǒng)調(diào)試中遇到了很多問題,如鍵盤消除抖動問題、共模電壓抑制SVPWM出現(xiàn)的直通現(xiàn)象等。最終完成了工業(yè)變頻器樣機,并且采用的是文章中研究的調(diào)制算法,效果良好,達到設計的目的; 提出了一種將有源功率因數(shù)校正(PFC)技術引用到串級調(diào)速中來提高定子側功率因數(shù)的新方法。通過建立電動機折算到轉(zhuǎn)子側的等值電路,重點分析了有源PFC技術代替?zhèn)鹘y(tǒng)串級調(diào)速系統(tǒng)中的不控整流橋后,系統(tǒng)可以等效為轉(zhuǎn)子串電阻調(diào)速。得到了等效串電阻的計算公式和變化趨勢,對電動機功率因數(shù)、電磁轉(zhuǎn)矩脈動也進行了分析,發(fā)現(xiàn)能夠比傳統(tǒng)串級調(diào)速時有所提升。鑒于電動機轉(zhuǎn)子側電勢頻率非常低,分析了有源PFC的具體實現(xiàn)的特殊考慮和參數(shù)選取方法,并基于對稱平衡的Scott變壓器和兩個單相有源PFC電路實現(xiàn)了繞線電動機轉(zhuǎn)子側的三相有源低頻PFC,得到超低紋波的直流輸出電壓。利用MATLAB建立了完整的仿真平臺,所得結果驗證了理論分析的正確性。

    標簽: 工業(yè) 變頻器 性能

    上傳時間: 2013-07-09

    上傳用戶:qq442012091

  • 一種新穎的隔離型軟開關Boost變換器的研究.rar

    交錯并聯(lián)反激變換器具有電路結構簡單,控制方便等優(yōu)點,并且可以實現(xiàn)電氣隔離。但是其升壓比不高,變換器中主開關管電壓應力較大,且工作中開關管處于硬開關狀態(tài),限制了變換器的效率。 針對交錯并聯(lián)反激變換器所存在的問題,本文提出了一種新穎的基于耦合電感第三繞組實現(xiàn)的原邊并聯(lián)、副邊并聯(lián)隔離型軟開關Boost變換器。該變換器繼承了交錯并聯(lián)反激變換器的優(yōu)點,兩個并聯(lián)單元互補工作,分擔功率損耗,輸出電壓的脈動頻率為主開關管的兩倍。不同的是,該變換器具有較高的升壓比,變換器中主開關管的電壓應力較小,克服了交錯并聯(lián)反激變換器的問題。在軟開關方面,變換器使用有源箝位軟開關電路,使主開關管與箝位開關管都實現(xiàn)了零電壓軟開關動作,提高了變換器的效率與使用壽命。因此,它與交錯并聯(lián)反激變換器相比,更適合于低電壓輸入、高電壓輸出的應用變換場合。 在該變換器的基礎上,針對變換器中輸出二極管電壓電流振蕩較大,本文還提出了經(jīng)過改進的引入輸出箝位電容的變換器。輸出箝位電容抑制了二極管兩端電壓的振蕩,減小了二極管的電壓應力,提高了變換器的效率。 最后,本文通過仿真與實驗驗證了基于耦合電感第三繞組實現(xiàn)的原邊并聯(lián)、副邊并聯(lián)隔離型軟開關Boost變換器及其改進型變換器方案的可行性與合理性。

    標簽: Boost 隔離型 軟開關

    上傳時間: 2013-05-20

    上傳用戶:chenlong

  • 模塊化UPS并聯(lián)及控制技術研究.rar

    隨著用戶對供電質(zhì)量要求的進一步提高,模塊化UPS 并聯(lián)系統(tǒng)獲得了越來越廣泛的應用。本文以模塊化UPS為研究對象,根據(jù)電路結構,將其分為直流部分模塊化和交流部分模塊化分別進行討論。整流環(huán)節(jié)對Boost-PFC 電路進行并聯(lián)控制,實現(xiàn)直流部分的模塊化;逆變環(huán)節(jié)在瞬時電壓PID 控制的基礎上,引入了瞬時均流的并聯(lián)控制策略,實現(xiàn)交流部分的模塊化。 介紹了有源功率因數(shù)校正技術的基本原理和控制思路,分析了單管雙Boost-PFC電路的工作過程,并將其簡化等效成常規(guī)的Boost 電路進行分析和控制。根據(jù)控制系統(tǒng)的結構,分別對電流控制環(huán)和電壓控制環(huán)進行了分析,得出了電感電流主要受電流指令的影響,而輸入輸出電壓差的影響則相對比較小;輸出電壓主要受參考給定指令電壓、緩啟給定指令電壓以及輸出電流等因素的影響。根據(jù)電流環(huán)和電壓環(huán)的解析表達式,給出了并聯(lián)控制的方法及原理。 對單相電路、三相電路以及多模塊并聯(lián)電路分別進行了仿真驗證,對多模塊的并聯(lián)系統(tǒng)進行了實驗驗證。建立了單相逆變器的數(shù)學模型,并加入PID 控制器,得到了輸出電壓的解析表達式,得出逆變器輸出電壓與參考給定電壓和輸出電流有關。利用極點配置的方法得到了模擬域PID 控制器參數(shù)的計算公式,并采用后向差分法,將其轉(zhuǎn)換到數(shù)字域,得到了數(shù)字PID 控制器參數(shù)與模擬域參數(shù)的換算關系。通過實驗測試和曲線擬合的辦法,得到了實際逆變器的電路參數(shù)。通過對所設計的數(shù)字PID 控制器進行仿真和實驗,驗證了理論分析和計算。建立了PID 電壓閉環(huán)的多逆變器并聯(lián)系統(tǒng)數(shù)學模型,分析得出并聯(lián)系統(tǒng)的輸出電壓主要由系統(tǒng)中各模塊的平均給定電壓決定,同時也受較高次的輸出諧波電流影響,受輸出基波電流影響相對較小;環(huán)流主要受模塊的給定電壓與系統(tǒng)平均給定電壓的偏差影響。針對環(huán)流產(chǎn)生的原因,提出了一種瞬時均流控制策略來減小系統(tǒng)環(huán)流對給定電壓偏差的增益,從而達到瞬時均流的目的。 對兩逆變模塊并聯(lián)的系統(tǒng)在各種工況下進行了仿真和實驗,驗證了理論分析的正確性和這種瞬時均流控制策略的可行性。

    標簽: UPS 模塊化 并聯(lián)

    上傳時間: 2013-04-24

    上傳用戶:ggwz258

  • 一種單相交流斬波變換器的研究.rar

    本文致力于可并聯(lián)運行的斬控式單相交流斬波變換器的研究。交交變換技術作為電力電子技術一個重要的領域一直得到人們的關注,但大都將目光投向AC-DC-AC兩級變換上面。AC/AC直接變換具有單級變換、功率密度高、拓撲緊湊簡單、并聯(lián)容易等優(yōu)勢,并且具有較強擴展性,故而在工業(yè)加熱、調(diào)光電源、異步電機啟動、調(diào)速等領域具有重要應用。斬控式AC/AC 電壓變換是一種基于自關斷半導體開關器件及脈寬調(diào)制控制方式的新型交流調(diào)壓技術。 本文對全數(shù)字化的斬控式AC/AC 變換做了系統(tǒng)研究,工作內(nèi)容主要有:對交流斬波電路的拓撲及其PWM方式做了詳細的推導,著重對不同拓撲的死區(qū)效應進行了分析,并且推導了不同負載情況對電壓控制的影響。重點推導了單相Buck型變換器和Buck-Boost 變換器的拓撲模型,并將單相系統(tǒng)的拓撲開關模式推導到三相的情況,然后分別對單相、三相的情況進行了Matlab仿真。建立了單相Buck 型拓撲的開關周期平均意義下的大信號模型和小信號模型,指導控制器的設計。建立了適合電路工作的基于占空比前饋的電壓瞬時值環(huán)、電壓平均值環(huán)控制策略。在理論分析和仿真驗證的基礎上,建立了一臺基于TMS320F2808數(shù)字信號處理器的實驗樣機,完成樣機調(diào)試,并完成各項性能指標的測試工作。

    標簽: 單相交流 斬波 變換器

    上傳時間: 2013-04-24

    上傳用戶:visit8888

  • 開關電源功率因數(shù)校正的研究.rar

    開關電源以其效率高、功率密度高在電源領域中占主導地位。開關電源多數(shù)是通過整流器與電力網(wǎng)相接的,經(jīng)典的整流器是由二極管或晶閘管組成的一個非線性電路,其輸入電流波形呈脈沖狀,交流網(wǎng)側功率因數(shù)很低,在電網(wǎng)中會產(chǎn)生大量的電流諧波和無功功率而污染電網(wǎng),成為電力公害。開關電源己成為電網(wǎng)最主要的諧波源之一。因此,進行網(wǎng)側功率因數(shù)校正成為目前研究的熱點之一。目前研究和應用得較多的高功率因數(shù)變換器要用兩級:DC/DC開關變換器串聯(lián)。這種電路的最大缺點是需要多個元器件、成本高、效率低,尤其在中小功率場合應用時很不經(jīng)濟。現(xiàn)在國內(nèi)外正在開發(fā)研究單級功率因數(shù)校正電路,具有很高的功率因數(shù)且成本低。因而研究單級功率因數(shù)校正及變換技術對抑制諧波污染、開創(chuàng)綠色電源以及實現(xiàn)當今開關電源的小型輕量化具有重大意義。 近年來隨著電子信息產(chǎn)業(yè)的高速發(fā)展,人們對開關電源的需求與日俱增,開關電源。PFC(Power Factor Correction)集成控制器己成為發(fā)展前景十分誘人的朝陽產(chǎn)業(yè)。隨著開關電源的廣泛應用,開關電源PFC集成控制器顯示出了強大的生命力,它具有集成度高、性價比高、外圍電路簡單和性能指標優(yōu)良等優(yōu)點,現(xiàn)已成為開發(fā)各類電源及開關電源模塊的優(yōu)選集成電路。 本文首先闡述了電網(wǎng)污染的危害、功率因數(shù)的定義,總結了各種功率因數(shù)校正變換器的典型拓撲,對各種拓撲的特點、應用場合及控制方法作了比較分析,著重詳細介紹了反激拓撲的功率因數(shù)校正變換器的應用及優(yōu)缺點。最后采用功率因數(shù)校正芯片SA7527進行了一個小功率電源的功率因數(shù)校正的設計,用實驗驗證了該設計的可行性,結果顯示功率因數(shù)能達到0.95左右,達到了較好的功率因數(shù)校正效果。

    標簽: 開關電源 功率因數(shù)校正

    上傳時間: 2013-06-30

    上傳用戶:czh415

  • LLC諧振變換器的研究.rar

    諧振變換器相對硬開關PWM變換器,具有開關頻率高、關斷損耗小、效率高、重量輕、體積小、EMI噪聲小、開關應力小等優(yōu)點。而LLC諧振變換器具有原邊開關管易實現(xiàn)全負載范圍內(nèi)的ZVS,次級二極管易實現(xiàn)ZCS諧振電感和變壓器易實現(xiàn)磁性元件的集成,以及輸入電壓范圍寬等優(yōu)點,因而得到了廣泛的關注。 本文對諧振變換器的基本分類和各種諧振變換器的優(yōu)缺點進行了比較和總結,并與傳統(tǒng)PWM變換器進行了對比,總結出LLC諧振變換器的主要優(yōu)點。并以400W LLC諧振變換器為目標設計,LLC前級使用APFC電路,后一級是LLC諧振變換器。 首先,基于FHA(基波分析法)的方法對LLC諧振變換器進了穩(wěn)態(tài)電路的分析,并詳細闡述了LLC諧振變換器在各個開關頻率范圍內(nèi)的工作原理和工作特性。隨后,文章詳細比較了LLC諧振變換器與傳統(tǒng)的諧振變換器和半橋PWM變換器不同之處。 然后,文章分別采用分段線性法和擴展描述函數(shù)法建立了LLC諧振變換器的小信號模型。由于分段線性法建立的小信號模型僅考慮了LLC諧振變換器工作在滿負載的情況下,為了建立更具一般性的模型,論文又采用了擴展描述函數(shù)法建模,用以指導控制環(huán)路的設計。 接著,論文對整個系統(tǒng)進行了綜合設計。文章給出了APFC部分的主電路和控制補償回路的具體設計;同時,也做出了LLC諧振變換器主電路的具體設計,而LLC諧振變換器控制回路的設計,仍需要更深一步的研究,并需提出一種切實可行的設計方法。 最后,采用Pspiee軟件建立了仿真模型。仿真結果得出LLC諧振變換器能在負載和輸入電壓變化范圍都很大的情況下實現(xiàn)輸出電壓的穩(wěn)定調(diào)節(jié),并能實現(xiàn)場效應管和二極管的軟開關,驗證了理論分析的正確性;由于實驗條件的限制,制作的實驗電路板處于調(diào)試之中,希望進一步驗證理論設計的正確性。

    標簽: LLC 諧振變換器

    上傳時間: 2013-04-24

    上傳用戶:DanXu

  • 電流型高電壓隔離開關電源.rar

    本課題為電流型高電壓隔離電源,它是基于交流電流母線的分布式系統(tǒng),能夠整定短路電流,適應高電壓工作環(huán)境的隔離電源。本論文介紹了該課題的應用場合,簡要介紹了分布式系統(tǒng)的種類及各自優(yōu)勢,以及已有的電流型副邊穩(wěn)壓電路相關的研究成果,并在此基礎上提出了本課題的研究目標。 本篇論文主要針對課題方案的三個方面進行論述,分別闡述如下: 一,母線電流產(chǎn)生系統(tǒng)與電流型副邊開關電路的匹配問題,包括各部分電路的功能介紹、電流型副邊開關電路的小信號等效電路的建模、高電壓隔離變壓器及磁元件的選擇; 二,模塊體積小型化有利于高壓部件的設計安裝和EMS防護。為了省去體積較大的輔助電源部分,本課題采用了副邊電路自供電的方式。在低壓自供電方式下,利用比較器、TLA31等器件產(chǎn)生多路同步三角波以及開關驅(qū)動PWM脈沖。對自供電方式下的三角波振蕩器進行比較,并對三角波振蕩器電路模塊進行了建模以及系統(tǒng)反饋補償; 三,在本方案中實現(xiàn)了電流源拓撲的同步整流技術,利用PMOS管替代續(xù)流二極管,減小了電路的損耗、散熱器的使用以及模塊的體積。 本篇論文對本課題設計的核心部分進行了比較詳細的介紹和分析,具體的參數(shù)計算方法也一一列出。最終,論文以研究目標為方向,通過一系列的改進措施,基本實現(xiàn)了課題要求。

    標簽: 電流型 高電壓 隔離開關

    上傳時間: 2013-06-24

    上傳用戶:wmwai1314

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日韩国产高清视频| 一级成人国产| 男女视频一区二区| 国产精品看片你懂得| 欧美视频一区二区三区四区| 午夜精品福利电影| 麻豆成人精品| 国产精品久久999| 亚洲电影免费观看高清完整版在线 | 亚洲国产精品久久久久婷婷884 | 欧美国产日韩视频| 国产欧美日韩另类视频免费观看| 亚洲欧洲一区二区在线观看| 欧美一级在线播放| 欧美天天视频| 亚洲国产精品成人| 久久久999国产| 国产欧美精品久久| 亚洲毛片在线免费观看| 鲁大师成人一区二区三区| 国产欧美三级| 亚洲综合色噜噜狠狠| 欧美二区在线播放| 精久久久久久| 亚洲欧美日韩第一区| 欧美日韩一区高清| 亚洲精品国产精品国自产观看浪潮| 久久国产直播| 国产亚洲亚洲| 久久久精品国产一区二区三区| 国产精品v亚洲精品v日韩精品| 日韩视频中文| 欧美日韩精品三区| 一区二区三区四区五区视频| 欧美激情综合色综合啪啪| 尤物精品在线| 欧美一区二区精品久久911| 欧美精品久久99久久在免费线| 国产日韩一区欧美| 亚洲精品视频免费| 麻豆精品视频在线| 国户精品久久久久久久久久久不卡| 午夜一区在线| 黄页网站一区| 欧美极品一区| 欧美激情久久久久| 美女精品一区| 亚洲精品欧洲精品| 欧美日韩一区二区视频在线观看| 亚洲午夜精品久久久久久app| 国产精品白丝av嫩草影院| 亚洲性线免费观看视频成熟| 国产亚洲精久久久久久| 久久综合久久综合九色| 亚洲精品资源美女情侣酒店| 欧美日韩一区二区免费在线观看| 亚洲永久视频| 伊人春色精品| 欧美视频一区二区三区四区| 欧美一级片在线播放| 怡红院精品视频| 欧美日韩亚洲一区二| 午夜激情久久久| 亚洲国产精品一区二区久| 欧美少妇一区| 久久视频免费观看| 亚洲视频一二区| 激情综合自拍| 欧美日韩在线高清| 久久久蜜桃一区二区人| 亚洲一二三区在线观看| 亚洲国产日韩在线一区模特| 国产精品九九久久久久久久| 美女国内精品自产拍在线播放| 一区二区三区.www| 亚洲高清久久网| 国产一区二区0| 国产精品久久久久久久久免费 | 欧美一区二区三区的| 亚洲福利视频专区| 国产精品久久中文| 欧美理论大片| 久久亚洲精品一区二区| 午夜精品999| 日韩视频久久| 91久久精品国产91久久性色tv| 欧美视频福利| 久久久久久久综合| 亚洲精品视频在线播放| 国产精品美女久久福利网站| 久久婷婷人人澡人人喊人人爽| 亚洲精品日韩在线| 国内久久精品视频| 国产在线拍偷自揄拍精品| 国产免费一区二区三区香蕉精| 欧美精品在线观看91| 久久手机免费观看| 奶水喷射视频一区| 久久精品国产亚洲精品| 性欧美精品高清| 午夜在线一区| 亚洲午夜av| 亚洲永久网站| 欧美一区二区三区四区视频| 欧美亚洲三级| 久久国产88| 久久久亚洲精品一区二区三区| 久久国产精品72免费观看| 欧美在线观看一区二区| 欧美一区二区女人| 久久精品国产亚洲一区二区| 久久av一区二区三区漫画| 久久精品亚洲国产奇米99| 久久久999精品免费| 老色批av在线精品| 欧美激情综合色| 国产精品成人一区二区三区吃奶| 欧美视频一区二区在线观看| 欧美亚洲不卡| 国产一级精品aaaaa看| 狠狠色丁香婷婷综合久久片| 在线日韩av| 亚洲美女在线观看| 亚洲一区日本| 麻豆av福利av久久av| 欧美韩国日本综合| 欧美视频在线观看一区| 国产日韩欧美视频| 亚洲黄一区二区三区| 亚洲专区一二三| 久久美女性网| 欧美午夜不卡视频| 国内精品伊人久久久久av影院 | 亚洲桃花岛网站| 午夜视频在线观看一区| 免播放器亚洲| 欧美日韩不卡视频| 午夜精品剧场| 亚洲综合色网站| 欧美在线视频导航| 久久久久久久网| 欧美日韩中文字幕综合视频 | 久久久久久久久久看片| 国产在线麻豆精品观看| 欧美日韩在线视频一区二区| 国产亚洲欧美日韩美女| 99pao成人国产永久免费视频| 午夜电影亚洲| 欧美精品入口| 国产欧美精品在线| 99综合精品| 欧美aaa级| 国产一区二区丝袜高跟鞋图片| 99精品视频免费观看视频| 久久久91精品国产一区二区精品| 欧美日韩另类视频| 最新国产の精品合集bt伙计| 欧美一区二区三区成人| 最新日韩中文字幕| 最新高清无码专区| 亚洲欧美成人一区二区在线电影 | 欧美一区二区观看视频| 欧美成人午夜视频| 国产区精品视频| 亚洲永久免费观看| 欧美激情在线| 亚洲国产精品一区二区www| 欧美在线观看一区二区| 国产精品久久久久久久久久尿| 亚洲精品在线免费观看视频| 美女日韩在线中文字幕| 精品动漫3d一区二区三区| 久久不射中文字幕| 国产综合色产| 欧美日韩一区二区三区| 亚洲一区国产视频| 黄色成人91| 99亚洲伊人久久精品影院红桃| 欧美日韩一区二区三区免费看| 亚洲国产激情| 久久香蕉国产线看观看av| 国产精品极品美女粉嫩高清在线| 欧美日韩免费观看一区三区 | 欧美四级在线观看| 激情小说另类小说亚洲欧美| 亚洲自拍电影| 国产精品天天摸av网| 亚洲欧洲在线视频| 老色鬼精品视频在线观看播放| 欧美高清视频在线| 美女诱惑一区| 欧美日韩免费观看一区=区三区| 亚洲性线免费观看视频成熟| 欧美日韩精品久久久| 欧美人成在线| 一区二区三区四区五区精品视频| 欧美日韩在线视频一区| 中文网丁香综合网| 国产免费成人av| 久久综合久久88|