單片機(jī)應(yīng)用技術(shù)選編(3) 目錄 第一章 單片機(jī)的綜合應(yīng)用技術(shù)1.1 8098單片機(jī)存儲(chǔ)器的擴(kuò)展技術(shù)1.2 87C196KC單片機(jī)的DMA功能1.3 MCS?96系列單片機(jī)高精度接口設(shè)計(jì)1.4 利用PC機(jī)的8096軟件開(kāi)發(fā)系統(tǒng)1.5 EPROM模擬器及其應(yīng)用1.6 MCS?51智能反匯編軟件的設(shè)計(jì)與實(shí)現(xiàn)1.7 MCS?51系列軟件設(shè)計(jì)與調(diào)試中一個(gè)值得注意的問(wèn)題1.8 PL/M語(yǔ)言在微機(jī)開(kāi)發(fā)系統(tǒng)中的應(yīng)用特性1.9 MCS?51單片機(jī)開(kāi)發(fā)系統(tǒng)中的斷點(diǎn)產(chǎn)生1.10 C語(yǔ)言實(shí)型數(shù)與單片機(jī)浮點(diǎn)數(shù)之間數(shù)據(jù)格式的轉(zhuǎn)換1.11 微機(jī)控制系統(tǒng)初始化問(wèn)題探討1.12 MCS?51中斷系統(tǒng)中的復(fù)位問(wèn)題1.13 工業(yè)控制軟件的編程原則與編程技巧1.14 CMOS微處理器的功耗特性及其功耗控制原理和應(yīng)用1.15 基于PLL技術(shù)的A/D、D/A轉(zhuǎn)換器的設(shè)計(jì)1.16 智能儀器監(jiān)控程序的模塊化設(shè)計(jì)1.17 用軟件邏輯開(kāi)關(guān)實(shí)現(xiàn)單片機(jī)的地址重疊使用1.18 8259A可編程中斷控制器與8031單片機(jī)接口電路及編程1.19 NSC810及其在各種微處理機(jī)中的應(yīng)用1.20 MC146818在使用中的幾個(gè)問(wèn)題1.21 交流伺服系統(tǒng)中采用8155兼作雙口信箱存儲(chǔ)器的雙微機(jī)結(jié)構(gòu)1.22 實(shí)用漢字庫(kù)芯片的制作 第二章 新一代存儲(chǔ)器及邏輯器件2.1 新一代非易失性記憶元件--閃爍存儲(chǔ)器2.2 Flash存儲(chǔ)器及應(yīng)用2.3 隨機(jī)靜態(tài)存儲(chǔ)器HM628128及應(yīng)用2.4 非揮發(fā)性隨機(jī)存儲(chǔ)器NOVRAM2.5 ASIC的設(shè)計(jì)方法和設(shè)計(jì)工具2.6 GAL器件的編程方法及其應(yīng)用2.7 第三代可編程邏輯器件--高密EPLD輯器件EPLDFPGA設(shè)計(jì)轉(zhuǎn)換 第三章 數(shù)據(jù)采集、前向通道與測(cè)量技術(shù) 3.1 溫度傳感器通道接口技術(shù) 3.2 LM135系列精密溫度傳感器的原理和應(yīng)用 3.3 儀表放大器AD626的應(yīng)用 3.4 5G7650使用中應(yīng)注意的問(wèn)題 3.5 用集成運(yùn)算放大器構(gòu)成電荷放大器組件 3.6 普通光電耦合器的線(xiàn)性應(yīng)用 3.7 高線(xiàn)性光耦合型隔離放大器的研制 3.8 一種隔離型16位單片機(jī)高精度模擬量接口3.9 單片16位A/D轉(zhuǎn)換器AD7701及其與8031單片機(jī)的串行接口3.10 雙積分型A/D轉(zhuǎn)換器與MCS?51系列單片機(jī)接口的新方法3.11 8031單片機(jī)與AD574A/D轉(zhuǎn)換器的最簡(jiǎn)接口3.12 8098單片機(jī)A/D轉(zhuǎn)換接口及其程序設(shè)計(jì)3.13 提高A/D轉(zhuǎn)換器分辨率的實(shí)用方案3.14 用CD4051提高8098單片機(jī)內(nèi)10位A/D轉(zhuǎn)換器分辨率的方法3.15 單片機(jī)實(shí)現(xiàn)16位高速積分式A/D轉(zhuǎn)換器3.16 434位A/D轉(zhuǎn)換器MAX133(134)的原理及應(yīng)用3.17 AD574A應(yīng)用中應(yīng)注意的問(wèn)題 3.18 CC14433使用中應(yīng)注意的問(wèn)題 3.19 高精度寬范圍數(shù)據(jù)采集系統(tǒng)的溫度補(bǔ)償途徑 3.20 縮短ICL7135A/D采樣程序時(shí)間的一種方法 3.21 用單片機(jī)實(shí)現(xiàn)的數(shù)字式自動(dòng)增益控制 3.22 自動(dòng)量程轉(zhuǎn)換電路 3.23 雙積分型A/D的自動(dòng)量程切換電路 3.24 常用雙積分型A/D轉(zhuǎn)換器自換程功能的擴(kuò)展3.25 具有自動(dòng)量程轉(zhuǎn)換功能的單片機(jī)A/D接口3.26 混合型數(shù)據(jù)采集器SDM857的功能與應(yīng)用3.27 高速數(shù)據(jù)采集系統(tǒng)的傳輸接口3.28 SJ2000方向鑒別位移脈寬頻率檢測(cè)多用途專(zhuān)用集成電路3.29 多路高速高精度F/D專(zhuān)用集成電路3.30 數(shù)控帶通濾波器的實(shí)現(xiàn)及其典型應(yīng)用 第四章 控制系統(tǒng)與后向通道接口技術(shù)4.1 模糊邏輯與模糊控制4.2 自動(dòng)控制技術(shù)的新發(fā)展--模糊控制技術(shù)4.3 模糊控制表的確定原則4.4 變結(jié)構(gòu)模糊控制系統(tǒng)的實(shí)驗(yàn)研究4.5 新型集成模糊數(shù)據(jù)相關(guān)器NLX1124.6 功率固態(tài)繼電器的應(yīng)用4.7 雙向功率MOS固態(tài)繼電器4.8 SSR小型固態(tài)繼電器與PSSR功率參數(shù)固態(tài)繼電器4.9 JGD型多功能固態(tài)繼電器的原理和應(yīng)用4.10 光電耦合器在晶閘管觸發(fā)電路中的應(yīng)用4.11 一種廉價(jià)的12位D/A轉(zhuǎn)換器AD667及接口4.12 利用單片機(jī)構(gòu)成高精度PWM式12位D/A4.13 三相高頻PWM模塊SLE45204.14 專(zhuān)用集成電路TCA785及其應(yīng)用4.15 單片溫度控制器LM3911的應(yīng)用4.16 工業(yè)測(cè)控系統(tǒng)軟件設(shè)計(jì)的若干問(wèn)題研究 第五章 人機(jī)對(duì)話(huà)通道接口技術(shù)5.1 廉價(jià)實(shí)用的8×8鍵盤(pán)5.2 單片機(jī)遙控鍵盤(pán)接口5.3 對(duì)8279鍵盤(pán)顯示接口的改進(jìn)5.4 用單片機(jī)8031的七根I/O線(xiàn)實(shí)現(xiàn)對(duì)鍵盤(pán)與顯示器的控制5.5 通用8位LED數(shù)碼管驅(qū)動(dòng)電路ICM7218B5.6 利用條圖顯示驅(qū)動(dòng)器LM3914組成100段LED顯示器的方法5.7 液晶顯示器的多極驅(qū)動(dòng)方式5.8 點(diǎn)陣式液晶顯示屏的構(gòu)造與應(yīng)用5.9 點(diǎn)陣式液晶顯示器圖形程序設(shè)計(jì)5.10 DMF5001N點(diǎn)陣式液晶顯示器和8098單片機(jī)的接口技術(shù)5.11 8098單片機(jī)與液晶顯示控制器HD61830接口5.12 利用PL/M語(yǔ)言對(duì)點(diǎn)陣式液晶顯示器進(jìn)行漢字程序設(shè)計(jì)5.13 語(yǔ)音合成器TMS 5220的開(kāi)發(fā)與應(yīng)用5.14 制作T6668語(yǔ)音系統(tǒng)的一些技術(shù)問(wèn)題5.15 單片機(jī)、單板機(jī)在屏顯系統(tǒng)中的應(yīng)用 第六章 多機(jī)通訊網(wǎng)絡(luò)與遙控技術(shù)6.1 用雙UART構(gòu)成的可尋址遙測(cè)點(diǎn)裝置--兼談如何組成系統(tǒng)6.2 IBM?PC微機(jī)與8098單片機(jī)的多機(jī)通訊6.3 80C196單片機(jī)與IBM?PC機(jī)的串行通訊6.4 IBM?PC與MCS?51多機(jī)通訊的研究6.5 半雙工方式傳送的單片機(jī)多機(jī)通信接口電路及軟件設(shè)計(jì)6.6 單片機(jī)與IBM/PC機(jī)通訊的新型接口及編程6.7 用光耦實(shí)現(xiàn)一點(diǎn)對(duì)多點(diǎn)的總線(xiàn)式通訊電路6.8 用EPROM作為通訊變換器實(shí)現(xiàn)多機(jī)通訊6.9 ICL232單電源雙RS?232發(fā)送/接收器及其應(yīng)用6.10 DTMF信號(hào)發(fā)送/接收電路芯片MT8880及應(yīng)用6.11 通用紅外線(xiàn)遙控系統(tǒng)6.12 8031單片機(jī)在遙控解碼方面的應(yīng)用 第七章 電源、電壓變換及電源監(jiān)視7.1 用于微機(jī)控制系統(tǒng)的高可靠性供電方法7.2 80C31單片機(jī)防掉電和抗干擾電源的設(shè)計(jì)7.3 可編程基準(zhǔn)電壓源7.4 電源電壓監(jiān)視器件M81953B7.5 檢出電壓可任意設(shè)定的電源電壓監(jiān)測(cè)器7.6 低壓降(LDO?Low Drop?Out)穩(wěn)壓器7.7 LM317三端可調(diào)穩(wěn)壓器應(yīng)用二例7.8 三端集成穩(wěn)壓器的擴(kuò)流應(yīng)用 第八章 可靠性與抗干擾技術(shù)8.1 數(shù)字電路的可靠性設(shè)計(jì)實(shí)踐與體會(huì)8.2 單片機(jī)容錯(cuò)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)8.3 微機(jī)測(cè)控系統(tǒng)的接地、屏蔽和電源供給8.4 ATE的抗干擾及接地技術(shù)8.5 微處理器監(jiān)控電路MAX690A/MAX692A8.6 電測(cè)儀表電路的實(shí)用抗干擾技術(shù)8.7 工業(yè)鍍鋅電阻爐溫度控制機(jī)的抗干擾措施8.8 一種簡(jiǎn)單的抗干擾控制算法 ? 第九章 綜合應(yīng)用實(shí)例9.1 蔬菜灌溉相關(guān)參數(shù)的自動(dòng)檢測(cè)9.2 MH?214溶解氧測(cè)定儀9.3 COP840C單片機(jī)在液晶線(xiàn)控空調(diào)電腦控制器中的應(yīng)用9.4 單片機(jī)在電飯煲中的應(yīng)用9.5 用PIC單片機(jī)制作電扇自然風(fēng)發(fā)生器 第十章 文章摘要 一、 單片機(jī)的綜合應(yīng)用技術(shù)1.1 摩托羅拉8位單片機(jī)的應(yīng)用和開(kāi)發(fā)1.2 NS公司的COP800系列8位單片機(jī)1.3 M68HC11與MCS?51單片機(jī)功能比較1.4 8098單片機(jī)8M存儲(chǔ)空間的擴(kuò)展技術(shù)1.5 80C196KC單片機(jī)的外部設(shè)備事件服務(wù)器1.6 一種多進(jìn)程實(shí)時(shí)控制系統(tǒng)的軟件設(shè)計(jì)1.7 開(kāi)發(fā)單片機(jī)的結(jié)構(gòu)化高級(jí)語(yǔ)言PL/M?961.8 應(yīng)用軟件開(kāi)發(fā)中的菜單接口技術(shù)1.9 單片機(jī)用戶(hù)系統(tǒng)EPROM中用戶(hù)程序的剖析方法1.10 BJS?98硬件、軟件典型實(shí)驗(yàn)1.11 FORTH語(yǔ)言系統(tǒng)的開(kāi)發(fā)應(yīng)用1.12 在Transputer系統(tǒng)上用并行C語(yǔ)言編程的特點(diǎn)1.13 一種軟件擴(kuò)展8031內(nèi)部計(jì)數(shù)器簡(jiǎn)易方法1.14 MCS 51系列單片機(jī)功能測(cè)試方法研究1.15 用CD 4520B設(shè)計(jì)對(duì)稱(chēng)輸出分頻器的方法1.16 多路模擬開(kāi)關(guān)CC 4051功能擴(kuò)展方法1.17 條形碼技術(shù)及其應(yīng)用系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)? 二、 新一代存儲(chǔ)器及邏輯器件2.1 一種多功能存儲(chǔ)器M6M 72561J2.2 串行E2PROM及其在智能儀器中的應(yīng)用2.3 新型高性能的AT24C系列串行E2PROM2.4 2K~512K EPROM編程卡2.5 電子盤(pán)的設(shè)計(jì)與實(shí)現(xiàn)2.6 NS GAL器件的封裝標(biāo)簽、類(lèi)型代碼和編程結(jié)構(gòu)間的關(guān)系 三、數(shù)據(jù)采集、前向通道與測(cè)量技術(shù)3.1 儀器用精密運(yùn)放CA3193的應(yīng)用3.2 集成電壓?電流轉(zhuǎn)換器XTR100的應(yīng)用3.3 瞬時(shí)浮點(diǎn)放大器及應(yīng)用3.4 隔離放大器289J及其應(yīng)用3.5 ICS?300系列新型加速度傳感器3.6 一種實(shí)用的壓力傳感器接口電路3.7 霍爾傳感器的應(yīng)用3.8 一種對(duì)多個(gè)傳感器進(jìn)行調(diào)理的方法3.9 兩線(xiàn)制壓力變送器3.10 小信號(hào)雙線(xiàn)變送器XTR101的使用3.11 兩線(xiàn)長(zhǎng)距離頻率傳輸壓力變送器的設(shè)計(jì)3.12 測(cè)溫元件AD590及其應(yīng)用3.13 熱敏電阻應(yīng)用動(dòng)態(tài)3.14 一種組合式A/D、D/A轉(zhuǎn)換器的設(shè)計(jì)3.15 一種復(fù)合式A/D轉(zhuǎn)換器3.16 TLC549串行輸出ADC及其應(yīng)用3.17 提高A/D轉(zhuǎn)換精度的方法--雙通道A/D轉(zhuǎn)換3.18 模數(shù)轉(zhuǎn)換器ICL7135的0~3.9999V顯示3.19 微型光耦合器3.20 一種高精度的分壓器電路3.21 利用單片機(jī)軟件作熱電偶非線(xiàn)性補(bǔ)償3.22 三線(xiàn)制RTD測(cè)量電路及應(yīng)用中要注意的問(wèn)題3.23 微伏信號(hào)高精度檢測(cè)中極易被忽略的問(wèn)題3.24 寬范圍等分辨率精密測(cè)量法3.25 傳感器在線(xiàn)校準(zhǔn)系統(tǒng)3.26 一種高精度的熱敏電阻測(cè)溫電路3.27 超聲波專(zhuān)用集成電路LM1812的原理與應(yīng)用3.28 旋轉(zhuǎn)變壓器數(shù)字化檢測(cè)及其在8098單片機(jī)控制伺服系統(tǒng)中的應(yīng)用3.29 單片集成兩端式感溫電流源AD590在溫度測(cè)控系統(tǒng)中的應(yīng)用?3.30 數(shù)字示波器和單片機(jī)構(gòu)成的自動(dòng)測(cè)試系統(tǒng)3.31 霍爾效應(yīng)式功率測(cè)量研究 四、 控制系統(tǒng)與后向通道接口技術(shù)4.1 模糊邏輯與模糊控制(實(shí)用模糊控制講座之一)4.2 紅綠燈模糊控制器(實(shí)用模糊控制講座之二)4.3 國(guó)外模糊技術(shù)新產(chǎn)品4.4 交流串級(jí)調(diào)速雙環(huán)模糊PI單片機(jī)控制系統(tǒng)4.5 時(shí)序控制專(zhuān)用集成電路LT156及其應(yīng)用4.6 電池充電控制集成電路4.7 雙向晶閘管4.8 雙向可控硅的自觸發(fā)電路及其應(yīng)用4.9 微處理器晶閘管頻率自適應(yīng)觸發(fā)器4.10 F18系列晶閘管模塊介紹4.11 集成電路UAA4002的原理及應(yīng)用4.12 IGBT及其驅(qū)動(dòng)電路4.13 TWH8751應(yīng)用集錦4.14 結(jié)構(gòu)可變式計(jì)算機(jī)工業(yè)控制系統(tǒng)設(shè)計(jì)4.15 單片機(jī)控制的音響編輯器 五、 人機(jī)對(duì)話(huà)通道接口技術(shù)5.1 5×7點(diǎn)陣LED智能顯示器的應(yīng)用5.2 基于8031串行口的LED電子廣告牌5.3 點(diǎn)陣液晶顯示控制器與計(jì)算機(jī)的接口技術(shù)5.4 單片機(jī)控制可編程液晶顯示系統(tǒng)5.5 大規(guī)模語(yǔ)言集成電路應(yīng)用綜述5.6 最新可編程語(yǔ)言集成電路MSSIO61的應(yīng)用5.7 用PC打印機(jī)接口擴(kuò)展并行接口 六、 多機(jī)系統(tǒng)、網(wǎng)絡(luò)與遙控技術(shù)6.1 用8098單片機(jī)構(gòu)成的分布式測(cè)溫系統(tǒng)6.2 平衡接口EIA?422和EIA485設(shè)計(jì)指南6.3 I2C BUS及其系統(tǒng)設(shè)計(jì)6.4 摩托羅拉可尋址異步接受/發(fā)送器6.5 用5V供電的RS232C接口芯片6.6 四通道紅外遙控器6.7 TA7333P和TA7657P的功能及應(yīng)用 七、 電源、電壓變換及電源監(jiān)視7.1 單片機(jī)控制的可控硅三相電源調(diào)壓穩(wěn)壓技術(shù)7.2 集成開(kāi)關(guān)電源控制器MC34063的原理及應(yīng)用7.3 LM299精密基準(zhǔn)電壓源7.4 集成過(guò)壓保護(hù)器的應(yīng)用7.5 3V供電的革命7.6 HMOS微機(jī)的超低電源電壓運(yùn)行技術(shù) 八、 可靠性與抗干擾設(shè)計(jì)8.1 淺談艦船電磁兼容與可靠性 九、 綜合應(yīng)用實(shí)例9.1 8098單片機(jī)交流電氣參數(shù)測(cè)試系統(tǒng)的設(shè)計(jì)和應(yīng)用9.2 主軸回轉(zhuǎn)誤差補(bǔ)償控制器9.3 FWK?A型大功率發(fā)射臺(tái)微機(jī)控制系統(tǒng)9.4 高性能壓控振蕩型精密波形發(fā)生器ICL8038及應(yīng)用9.5 單片機(jī)COP 840C在洗碗機(jī)中的應(yīng)用
標(biāo)簽: 單片機(jī) 應(yīng)用技術(shù)
上傳時(shí)間: 2013-11-10
上傳用戶(hù):lijinchuan
RS-232-C 是PC 機(jī)常用的串行接口,由于信號(hào)電平值較高,易損壞接口電路的芯片,與TTL電平不兼容故需使用電平轉(zhuǎn)換電路方能與TTL 電路連接。本產(chǎn)品(轉(zhuǎn)接器),可以實(shí)現(xiàn)任意電平下(0.8~15)的UART串行接口到RS-232-C/E接口的無(wú)源電平轉(zhuǎn)接, 使用非常方便可靠。 什么是RS-232-C 接口?采用RS-232-C 接口有何特點(diǎn)?傳輸電纜長(zhǎng)度如何考慮?答: 計(jì)算機(jī)與計(jì)算機(jī)或計(jì)算機(jī)與終端之間的數(shù)據(jù)傳送可以采用串行通訊和并行通訊二種方式。由于串行通訊方式具有使用線(xiàn)路少、成本低,特別是在遠(yuǎn)程傳輸時(shí),避免了多條線(xiàn)路特性的不一致而被廣泛采用。 在串行通訊時(shí),要求通訊雙方都采用一個(gè)標(biāo)準(zhǔn)接口,使不同 的設(shè)備可以方便地連接起來(lái)進(jìn)行通訊。 RS-232-C接口(又稱(chēng) EIA RS-232-C)是目前最常用的一種串行通訊接口。它是在1970 年由美國(guó)電子工業(yè)協(xié)會(huì)(EIA)聯(lián)合貝爾系統(tǒng)、 調(diào)制解調(diào)器廠(chǎng)家及計(jì)算機(jī)終端生產(chǎn)廠(chǎng)家共同制定的用于串行通訊的標(biāo)準(zhǔn)。它的全名是“數(shù)據(jù)終端設(shè)備(DTE)和數(shù)據(jù)通訊設(shè)備(DCE)之間串行二進(jìn)制數(shù)據(jù)交換接口技術(shù)標(biāo)準(zhǔn)”該標(biāo)準(zhǔn)規(guī)定采用一個(gè)25 個(gè)腳的 DB25 連接器,對(duì)連接器的每個(gè)引腳的信號(hào)內(nèi)容加以規(guī)定,還對(duì)各種信號(hào)的電平加以規(guī)定。(1) 接口的信號(hào)內(nèi)容實(shí)際上RS-232-C 的25 條引線(xiàn)中有許多是很少使用的,在計(jì)算機(jī)與終端通訊中一般只使用3-9 條引線(xiàn)。(2) 接口的電氣特性 在RS-232-C 中任何一條信號(hào)線(xiàn)的電壓均為負(fù)邏輯關(guān)系。即:邏輯“1”,-5— -15V;邏輯“0” +5— +15V 。噪聲容限為2V。即 要求接收器能識(shí)別低至+3V 的信號(hào)作為邏輯“0”,高到-3V的信號(hào) 作為邏輯“1”(3) 接口的物理結(jié)構(gòu) RS-232-C 接口連接器一般使用型號(hào)為DB-25 的25 芯插頭座,通常插頭在DCE 端,插座在DTE端. 一些設(shè)備與PC 機(jī)連接的RS-232-C 接口,因?yàn)椴皇褂脤?duì)方的傳送控制信號(hào),只需三條接口線(xiàn),即“發(fā)送數(shù)據(jù)”、“接收數(shù)據(jù)”和“信號(hào)地”。所以采用DB-9 的9 芯插頭座,傳輸線(xiàn)采用屏蔽雙絞線(xiàn)。(4) 傳輸電纜長(zhǎng)度由RS-232C 標(biāo)準(zhǔn)規(guī)定在碼元畸變小于4%的情況下,傳輸電纜長(zhǎng)度應(yīng)為50 英尺,其實(shí)這個(gè)4%的碼元畸變是很保守的,在實(shí)際應(yīng)用中,約有99%的用戶(hù)是按碼元畸變10-20%的范圍工作的,所以實(shí)際使用中最大距離會(huì)遠(yuǎn)超過(guò)50 英尺,美國(guó)DEC 公司曾規(guī)定允許碼元畸變?yōu)?0%而得出附表2 的實(shí)驗(yàn)結(jié)果。其中1 號(hào)電纜為屏蔽電纜,型號(hào)為DECP.NO.9107723 內(nèi)有三對(duì)雙絞線(xiàn),每對(duì)由22# AWG 組成,其外覆以屏蔽網(wǎng)。2 號(hào)電纜為不帶屏蔽的電纜。 2. 什么是RS-485 接口?它比RS-232-C 接口相比有何特點(diǎn)?答: 由于RS-232-C 接口標(biāo)準(zhǔn)出現(xiàn)較早,難免有不足之處,主要有以下四點(diǎn):(1) 接口的信號(hào)電平值較高,易損壞接口電路的芯片,又因?yàn)榕cTTL 電平不兼容故需使用電平轉(zhuǎn)換電路方能與TTL 電路連接。(2) 傳輸速率較低,在異步傳輸時(shí),波特率為20Kbps。(3) 接口使用一根信號(hào)線(xiàn)和一根信號(hào)返回線(xiàn)而構(gòu)成共地的傳輸形式, 這種共地傳輸容易產(chǎn)生共模干擾,所以抗噪聲干擾性弱。(4) 傳輸距離有限,最大傳輸距離標(biāo)準(zhǔn)值為50 英尺,實(shí)際上也只能 用在50 米左右。針對(duì)RS-232-C 的不足,于是就不斷出現(xiàn)了一些新的接口標(biāo)準(zhǔn),RS-485 就是其中之一,它具有以下特點(diǎn):1. RS-485 的電氣特性:邏輯“1”以?xún)删€(xiàn)間的電壓差為+(2—6) V 表示;邏輯“0”以?xún)删€(xiàn)間的電壓差為-(2—6)V 表示。接口信號(hào)電平比RS-232-C 降低了,就不易損壞接口電路的芯片, 且該電平與TTL 電平兼容,可方便與TTL 電路連接。2. RS-485 的數(shù)據(jù)最高傳輸速率為10Mbps3. RS-485 接口是采用平衡驅(qū)動(dòng)器和差分接收器的組合,抗共模干能力增強(qiáng),即抗噪聲干擾性好。4. RS-485 接口的最大傳輸距離標(biāo)準(zhǔn)值為4000 英尺,實(shí)際上可達(dá) 3000 米,另外RS-232-C接口在總線(xiàn)上只允許連接1 個(gè)收發(fā)器, 即單站能力。而RS-485 接口在總線(xiàn)上是允許連接多達(dá)128 個(gè)收發(fā)器。即具有多站能力,這樣用戶(hù)可以利用單一的RS-485 接口方便地建立起設(shè)備網(wǎng)絡(luò)。因RS-485 接口具有良好的抗噪聲干擾性,長(zhǎng)的傳輸距離和多站能力等上述優(yōu)點(diǎn)就使其成為首選的串行接口。 因?yàn)镽S485 接口組成的半雙工網(wǎng)絡(luò),一般只需二根連線(xiàn),所以RS485接口均采用屏蔽雙絞線(xiàn)傳輸。 RS485 接口連接器采用DB-9 的9 芯插頭座,與智能終端RS485接口采用DB-9(孔),與鍵盤(pán)連接的鍵盤(pán)接口RS485 采用DB-9(針)。3. 采用RS485 接口時(shí),傳輸電纜的長(zhǎng)度如何考慮?答: 在使用RS485 接口時(shí),對(duì)于特定的傳輸線(xiàn)經(jīng),從發(fā)生器到負(fù)載其數(shù)據(jù)信號(hào)傳輸所允許的最大電纜長(zhǎng)度是數(shù)據(jù)信號(hào)速率的函數(shù),這個(gè) 長(zhǎng)度數(shù)據(jù)主要是受信號(hào)失真及噪聲等影響所限制。下圖所示的最大電纜長(zhǎng)度與信號(hào)速率的關(guān)系曲線(xiàn)是使用24AWG 銅芯雙絞電話(huà)電纜(線(xiàn) 徑為0.51mm),線(xiàn)間旁路電容為52.5PF/M,終端負(fù)載電阻為100 歐 時(shí)所得出。(曲線(xiàn)引自GB11014-89 附錄A)。由圖中可知,當(dāng)數(shù)據(jù)信 號(hào)速率降低到90Kbit/S 以下時(shí),假定最大允許的信號(hào)損失為6dBV 時(shí), 則電纜長(zhǎng)度被限制在1200M。實(shí)際上,圖中的曲線(xiàn)是很保守的,在實(shí) 用時(shí)是完全可以取得比它大的電纜長(zhǎng)度。 當(dāng)使用不同線(xiàn)徑的電纜。則取得的最大電纜長(zhǎng)度是不相同的。例 如:當(dāng)數(shù)據(jù)信號(hào)速率為600Kbit/S 時(shí),采用24AWG 電纜,由圖可知最 大電纜長(zhǎng)度是200m,若采用19AWG 電纜(線(xiàn)徑為0。91mm)則電纜長(zhǎng) 度將可以大于200m; 若采用28AWG 電纜(線(xiàn)徑為0。32mm)則電纜 長(zhǎng)度只能小于200m。
上傳時(shí)間: 2013-10-11
上傳用戶(hù):時(shí)代電子小智
如同今天的許多通用單片機(jī)(MCU)已經(jīng)把USB、CAN和以太網(wǎng)作為標(biāo)準(zhǔn)外設(shè)集成在芯片內(nèi)部一樣,越來(lái)越多的無(wú)線(xiàn)網(wǎng)絡(luò)芯片和無(wú)線(xiàn)網(wǎng)絡(luò)解決方案也在向集成SoC 方向發(fā)展,比如第一代產(chǎn)品,Nordic公司nRF905,Chipcon公司cc1010 他們集成了8051兼容的單片機(jī).這些無(wú)線(xiàn)單片機(jī)適合一般的點(diǎn)對(duì)點(diǎn)和點(diǎn)對(duì)多點(diǎn)的私有網(wǎng)絡(luò)應(yīng)用,如單一產(chǎn)品的遙控器和抄表裝置等。無(wú)線(xiàn)通訊技術(shù)給智能裝置的互連互通提供了便捷的途徑,工業(yè)無(wú)線(xiàn)網(wǎng)絡(luò)作為面向工業(yè)和家庭自動(dòng)化的網(wǎng)絡(luò)技術(shù)也正在向著智能,標(biāo)準(zhǔn)和節(jié)能方向發(fā)展?! ∧壳霸诠I(yè)控制和消費(fèi)電子領(lǐng)域使用的無(wú)線(xiàn)網(wǎng)絡(luò)技術(shù)有ZigBee、無(wú)線(xiàn)局域網(wǎng)(Wi-Fi)、藍(lán)牙(Blutooth)、GPRS通用分組無(wú)線(xiàn)業(yè)務(wù)、 ISM、IrDA等, 未來(lái)還能有3G、超寬頻(UWB)、無(wú)線(xiàn)USB、Wimax等。 當(dāng)然還有大量的私有和專(zhuān)用無(wú)線(xiàn)網(wǎng)絡(luò)在工業(yè)控制和消費(fèi)電子裝置中使用,其中ZigBee、GPRS是在目前在國(guó)內(nèi)工業(yè)控制中討論和使用比較多的兩種,藍(lán)牙和無(wú)線(xiàn)局域網(wǎng)是在消費(fèi)電子產(chǎn)品如手機(jī)、耳機(jī)、打印機(jī)、照相機(jī)和家庭中小企業(yè)網(wǎng)絡(luò)中廣泛使用的無(wú)線(xiàn)協(xié)議(個(gè)別工業(yè)產(chǎn)品也有應(yīng)用,如無(wú)線(xiàn)視頻監(jiān)控和汽車(chē)音響系統(tǒng)),當(dāng)然私有無(wú)線(xiàn)網(wǎng)絡(luò)技術(shù)和產(chǎn)品在工業(yè)也有很多的應(yīng)用?! igBee是一個(gè)低功耗、短距離和低速的無(wú)線(xiàn)網(wǎng)絡(luò)技術(shù),工作在2.4GHz國(guó)際免執(zhí)照的頻率,在IEEE標(biāo)準(zhǔn)上它和無(wú)線(xiàn)局域網(wǎng)、藍(lán)牙同屬802家族中的無(wú)線(xiàn)個(gè)人區(qū)域網(wǎng)絡(luò), ZigBee是有兩部分組成,物理和鏈路層符合IEEE802.15.4, 網(wǎng)絡(luò)和應(yīng)用層符合ZigBee聯(lián)盟的規(guī)范。ZigBee聯(lián)盟是在2002年成立的非盈利組織,有包括TI、霍尼威爾、華為在內(nèi)兩百多家成員, ZigBee聯(lián)盟致力推廣兼容802.15.4和ZigBee協(xié)議的平臺(tái), 制定網(wǎng)絡(luò)層和應(yīng)用架構(gòu)的公共規(guī)范,希望在樓宇自動(dòng)化、居家控制、家用電器、工業(yè)自動(dòng)控制和電腦外設(shè)等多方面普及ZigBee標(biāo)準(zhǔn)?! PRS是在現(xiàn)有的GSM 網(wǎng)絡(luò)發(fā)展出來(lái)的分組數(shù)據(jù)承載業(yè)務(wù),它工作在標(biāo)準(zhǔn)的GSM頻率,由于是一個(gè)分組交換系統(tǒng),它適合工業(yè)上的突發(fā),少量的數(shù)據(jù)傳輸,還因?yàn)镚SM網(wǎng)絡(luò)覆蓋廣泛,永遠(yuǎn)在線(xiàn)的特點(diǎn),GPRS特點(diǎn)適合工業(yè)控制中的遠(yuǎn)程監(jiān)控和測(cè)量系統(tǒng)。在工業(yè)控制應(yīng)用中GPRS 芯片一般是以無(wú)線(xiàn)數(shù)傳模塊形式出現(xiàn)的,它通過(guò)RS232全雙工接口和單片機(jī)連接,軟件上這些模塊都內(nèi)置了GPRS,PPP和TCP/IP協(xié)議,單片機(jī)側(cè)通過(guò)AT指令集向模塊發(fā)出測(cè)試,連接和數(shù)據(jù)收發(fā)指令,GPRS模塊通過(guò)中國(guó)移動(dòng)cmnet進(jìn)入互聯(lián)網(wǎng)和其他終端或者服務(wù)器通訊。目前市場(chǎng)常見(jiàn)的模塊有西門(mén)子G24TC45、TC35i,飛思卡爾G24,索愛(ài)GR47/48, 還有Wavecom 的集成了ARM9核的GPRS SoC模塊WMP50/100。GPRS模塊有區(qū)分自帶TCP/IP協(xié)議和不帶協(xié)議兩種,一般來(lái)講,如果是單片機(jī)側(cè)有嵌入式操作系統(tǒng)和TCP/IP協(xié)議支持的話(huà)或者應(yīng)用的要求只是收發(fā)短信和語(yǔ)音功能的話(huà),可以選擇不帶協(xié)議的模塊?! ∠冗M(jìn)的SoC技術(shù)正在無(wú)線(xiàn)應(yīng)用領(lǐng)域發(fā)揮重要的作用。德州儀器收購(gòu)了Chipcon公司以后發(fā)布的CC2430 是市場(chǎng)上首款SoC的ZigBee單片機(jī), 見(jiàn)圖1,它把協(xié)議棧z-stack集成在芯片內(nèi)部的閃存里面, 具有穩(wěn)定可靠的CC2420收發(fā)器,增強(qiáng)性的8051內(nèi)核,8KRAM,外設(shè)有I/O 口,ADC,SPI,UART 和AES128 安全協(xié)處理器,三個(gè)版本分別是32/64/128K的閃存,以128K為例,扣除基本z-stack協(xié)議還有3/4的空間留給應(yīng)用代碼,即使完整的ZigBee協(xié)議,還有近1/2的空間留給應(yīng)用代碼,這樣的無(wú)線(xiàn)單片機(jī)除了處理通訊協(xié)議外,還可以完成一些監(jiān)控和顯示任務(wù)。這樣無(wú)線(xiàn)單片機(jī)都支持通過(guò)SPI或者UART與通用單片機(jī)或者嵌入式CPU結(jié)合。 2008年4月發(fā)表CC2480新一代單片ZibBee認(rèn)證處理器就展示出和TI MSP430 通用的低功耗單片機(jī)結(jié)合的例子。圖1 CC2430應(yīng)用電路 工業(yè)控制領(lǐng)域的另一個(gè)芯片巨頭——飛思卡爾的單片ZigBee處理器MC1321X的方案也非常類(lèi)似,集成了HC08單片機(jī)核心, 16/32/64K 閃存,外設(shè)有GPIO, I2C和ADC, 軟件是Beestack 協(xié)議,只是最多4K RAM 對(duì)于更多的任務(wù)顯得小了些。但是憑借32位單片機(jī)Coldfire和系統(tǒng)軟件方面經(jīng)驗(yàn)和優(yōu)勢(shì), 飛思卡爾在滿(mǎn)足用戶(hù)應(yīng)用的彈性需求方面作的更有特色,它率先能夠提供從低-中-高各個(gè)層面的解決方案,見(jiàn)圖2。
標(biāo)簽: 單片機(jī) 工業(yè)無(wú)線(xiàn)網(wǎng)絡(luò)
上傳時(shí)間: 2013-11-02
上傳用戶(hù):momofiona
C8051F040/1/2/3/4/5/6/7混合信號(hào)ISP FLASH 微控制器數(shù) 據(jù) 手 冊(cè) C8051F04x 系列器件是完全集成的混合信號(hào)片上系統(tǒng)型MCU,具有64 個(gè)數(shù)字I/O 引腳(C8051F040/2/4/6)或32 個(gè)數(shù)字I/O 引腳(C8051F041/3/5/7),片內(nèi)集成了一個(gè)CAN2.0B 控制器。下面列出了一些主要特性;有關(guān)某一產(chǎn)品的具體特性參見(jiàn)表1.1。 高速、流水線(xiàn)結(jié)構(gòu)的8051 兼容的CIP-51 內(nèi)核(可達(dá)25MIPS) 控制器局域網(wǎng)(CAN2.0B)控制器,具有32 個(gè)消息對(duì)象,每個(gè)消息對(duì)象有其自己的標(biāo)識(shí) 全速、非侵入式的在系統(tǒng)調(diào)試接口(片內(nèi)) 真正12 位(C8051F040/1)或10 位(C8051F042/3/4/5/6/7)、100 ksps 的ADC,帶PGA 和8 通道模擬多路開(kāi)關(guān) 允許高電壓差分放大器輸入到12/10 位ADC(60V 峰-峰值),增益可編程 真正8 位500 ksps 的ADC,帶PGA 和8 通道模擬多路開(kāi)關(guān)(C8051F040/1/2/3) 兩個(gè)12 位DAC,具有可編程數(shù)據(jù)更新方式(C8051F040/1/2/3) 64KB(C8051F040/1/2/3/4/5)或32KB(C8051F046/7)可在系統(tǒng)編程的FLASH 存儲(chǔ)器 4352(4K+256)字節(jié)的片內(nèi)RAM 可尋址64KB 地址空間的外部數(shù)據(jù)存儲(chǔ)器接口 硬件實(shí)現(xiàn)的SPI、SMBus/ I2C 和兩個(gè)UART 串行接口 5 個(gè)通用的16 位定時(shí)器 具有6 個(gè)捕捉/比較模塊的可編程計(jì)數(shù)器/定時(shí)器陣列 片內(nèi)看門(mén)狗定時(shí)器、VDD 監(jiān)視器和溫度傳感器具有片內(nèi)VDD 監(jiān)視器、看門(mén)狗定時(shí)器和時(shí)鐘振蕩器的C8051F04x 系列器件是真正能獨(dú)立工作的片上系統(tǒng)。所有模擬和數(shù)字外設(shè)均可由用戶(hù)固件使能/禁止和配置。FLASH 存儲(chǔ)器還具有在系統(tǒng)重新編程能力,可用于非易失性數(shù)據(jù)存儲(chǔ),并允許現(xiàn)場(chǎng)更新8051 固件。片內(nèi)JTAG 調(diào)試電路允許使用安裝在最終應(yīng)用系統(tǒng)上的產(chǎn)品MCU 進(jìn)行非侵入式(不占用片內(nèi)資源)、全速、在系統(tǒng)調(diào)試。該調(diào)試系統(tǒng)支持觀(guān)察和修改存儲(chǔ)器和寄存器,支持?jǐn)帱c(diǎn)、觀(guān)察點(diǎn)、單步及運(yùn)行和停機(jī)命令。在使用JTAG 調(diào)試時(shí),所有的模擬和數(shù)字外設(shè)都可全功能運(yùn)行。每個(gè)MCU 都可在工業(yè)溫度范圍(-45℃到+85℃)工作,工作電壓為2.7 ~ 3.6V。端口I/O、/RST和JTAG 引腳都容許5V 的輸入信號(hào)電壓。C8051F040/2/4/6 為100 腳TQFP 封裝(見(jiàn)圖1.1 和圖1.3的框圖)。C8051F041/3/5/7 為64 腳TQFP 封裝(見(jiàn)圖1.2 和圖1.4 的框圖)。
上傳時(shí)間: 2013-10-24
上傳用戶(hù):hwl453472107
在C8051F系列單片機(jī)中集成有多通道8位、10位、12位或16位的SAR型ADC,能夠滿(mǎn)足大多數(shù)數(shù)據(jù)采集的應(yīng)用需求;集成跟蹤和保持電路;集成模擬多路復(fù)用器(AMUX)。 采樣頻率從100ksps到1Msps。 片內(nèi)溫度傳感器可直接配置到ADC的輸入端。 C8051F04x系列集成可編程增益放大器(PGA)和高電壓差分放大器(HVDA),可接受60V的差動(dòng)模擬電壓輸入。 集成越限檢測(cè)器,可監(jiān)視模擬量的變化范圍,越限能產(chǎn)生中斷。 C8051F06x系列集成DMA接口,提高對(duì)轉(zhuǎn)換結(jié)果的讀取效率。 ADC轉(zhuǎn)換啟動(dòng)方式:軟件設(shè)置寄存器位啟動(dòng);定時(shí)器溢出啟動(dòng);外部管腳信號(hào)啟動(dòng)。
標(biāo)簽: C8051F 單片機(jī)應(yīng)用
上傳時(shí)間: 2013-10-13
上傳用戶(hù):jx_wwq
單片機(jī)應(yīng)用系統(tǒng)抗干擾技術(shù):第1章 電磁干擾控制基礎(chǔ). 1.1 電磁干擾的基本概念1 1.1.1 噪聲與干擾1 1.1.2 電磁干擾的形成因素2 1.1.3 干擾的分類(lèi)2 1.2 電磁兼容性3 1.2.1 電磁兼容性定義3 1.2.2 電磁兼容性設(shè)計(jì)3 1.2.3 電磁兼容性常用術(shù)語(yǔ)4 1.2.4 電磁兼容性標(biāo)準(zhǔn)6 1.3 差模干擾和共模干擾8 1.3.1 差模干擾8 1.3.2 共模干擾9 1.4 電磁耦合的等效模型9 1.4.1 集中參數(shù)模型9 1.4.2 分布參數(shù)模型10 1.4.3 電磁波輻射模型11 1.5 電磁干擾的耦合途徑14 1.5.1 傳導(dǎo)耦合14 1.5.2 感應(yīng)耦合(近場(chǎng)耦合)15 .1.5.3 電磁輻射耦合(遠(yuǎn)場(chǎng)耦合)15 1.6 單片機(jī)應(yīng)用系統(tǒng)電磁干擾控制的一般方法16 第2章 數(shù)字信號(hào)耦合與傳輸機(jī)理 2.1 數(shù)字信號(hào)與電磁干擾18 2.1.1 數(shù)字信號(hào)的開(kāi)關(guān)速度與頻譜18 2.1.2 開(kāi)關(guān)暫態(tài)電源尖峰電流噪聲22 2.1.3 開(kāi)關(guān)暫態(tài)接地反沖噪聲24 2.1.4 高速數(shù)字電路的EMI特點(diǎn)25 2.2 導(dǎo)線(xiàn)阻抗與線(xiàn)間耦合27 2.2.1 導(dǎo)體交直流電阻的計(jì)算27 2.2.2 導(dǎo)體電感量的計(jì)算29 2.2.3 導(dǎo)體電容量的計(jì)算31 2.2.4 電感耦合分析32 2.2.5 電容耦合分析35 2.3 信號(hào)的長(zhǎng)線(xiàn)傳輸36 2.3.1 長(zhǎng)線(xiàn)傳輸過(guò)程的數(shù)學(xué)描述36 2.3.2 均勻傳輸線(xiàn)特性40 2.3.3 傳輸線(xiàn)特性阻抗計(jì)算42 2.3.4 傳輸線(xiàn)特性阻抗的重復(fù)性與阻抗匹配44 2.4 數(shù)字信號(hào)傳輸過(guò)程中的畸變45 2.4.1 信號(hào)傳輸?shù)娜肷浠?5 2.4.2 信號(hào)傳輸?shù)姆瓷浠?6 2.5 信號(hào)傳輸畸變的抑制措施49 2.5.1 最大傳輸線(xiàn)長(zhǎng)度的計(jì)算49 2.5.2 端點(diǎn)的阻抗匹配50 2.6 數(shù)字信號(hào)的輻射52 2.6.1 差模輻射52 2.6.2 共模輻射55 2.6.3 差模和共模輻射比較57 第3章 常用元件的可靠性能與選擇 3.1 元件的選擇與降額設(shè)計(jì)59 3.1.1 元件的選擇準(zhǔn)則59 3.1.2 元件的降額設(shè)計(jì)59 3.2 電阻器60 3.2.1 電阻器的等效電路60 3.2.2 電阻器的內(nèi)部噪聲60 3.2.3 電阻器的溫度特性61 3.2.4 電阻器的分類(lèi)與主要參數(shù)62 3.2.5 電阻器的正確選用66 3.3 電容器67 3.3.1 電容器的等效電路67 3.3.2 電容器的種類(lèi)與型號(hào)68 3.3.3 電容器的標(biāo)志方法70 3.3.4 電容器引腳的電感量71 3.3.5 電容器的正確選用71 3.3.6 電容器使用注意事項(xiàng)73 3.4 電感器73 3.4.1 電感器的等效電路74 3.4.2 電感器使用的注意事項(xiàng)74 3.5 數(shù)字集成電路的抗干擾性能75 3.5.1 噪聲容限與抗干擾能力75 3.5.2 施密特集成電路的噪聲容限77 3.5.3 TTL數(shù)字集成電路的抗干擾性能78 3.5.4 CMOS數(shù)字集成電路的抗干擾性能79 3.5.5 CMOS電路使用中注意事項(xiàng)80 3.5.6 集成門(mén)電路系列型號(hào)81 3.6 高速CMOS 54/74HC系列接口設(shè)計(jì)83 3.6.1 54/74HC 系列芯片特點(diǎn)83 3.6.2 74HC與TTL接口85 3.6.3 74HC與單片機(jī)接口85 3.7 元器件的裝配工藝對(duì)可靠性的影響86 第4章 電磁干擾硬件控制技術(shù) 4.1 屏蔽技術(shù)88 4.1.1 電場(chǎng)屏蔽88 4.1.2 磁場(chǎng)屏蔽89 4.1.3 電磁場(chǎng)屏蔽91 4.1.4 屏蔽損耗的計(jì)算92 4.1.5 屏蔽體屏蔽效能的計(jì)算99 4.1.6 屏蔽箱的設(shè)計(jì)100 4.1.7 電磁泄漏的抑制措施102 4.1.8 電纜屏蔽層的屏蔽原理108 4.1.9 屏蔽與接地113 4.1.10 屏蔽設(shè)計(jì)要點(diǎn)113 4.2 接地技術(shù)114 4.2.1 概述114 4.2.2 安全接地115 4.2.3 工作接地117 4.2.4 接地系統(tǒng)的布局119 4.2.5 接地裝置和接地電阻120 4.2.6 地環(huán)路問(wèn)題121 4.2.7 浮地方式122 4.2.8 電纜屏蔽層接地123 4.3 濾波技術(shù)126 4.3.1 濾波器概述127 4.3.2 無(wú)源濾波器130 4.3.3 有源濾波器138 4.3.4 鐵氧體抗干擾磁珠143 4.3.5 貫通濾波器146 4.3.6 電纜線(xiàn)濾波連接器149 4.3.7 PCB板濾波器件154 4.4 隔離技術(shù)155 4.4.1 光電隔離156 4.4.2 繼電器隔離160 4.4.3 變壓器隔離 161 4.4.4 布線(xiàn)隔離161 4.4.5 共模扼流圈162 4.5 電路平衡結(jié)構(gòu)164 4.5.1 雙絞線(xiàn)在平衡電路中的使用164 4.5.2 同軸電纜的平衡結(jié)構(gòu)165 4.5.3 差分放大器165 4.6 雙絞線(xiàn)的抗干擾原理及應(yīng)用166 4.6.1 雙絞線(xiàn)的抗干擾原理166 4.6.2 雙絞線(xiàn)的應(yīng)用168 4.7 信號(hào)線(xiàn)間的串?dāng)_及抑制169 4.7.1 線(xiàn)間串?dāng)_分析169 4.7.2 線(xiàn)間串?dāng)_的抑制173 4.8 信號(hào)線(xiàn)的選擇與敷設(shè)174 4.8.1 信號(hào)線(xiàn)型式的選擇174 4.8.2 信號(hào)線(xiàn)截面的選擇175 4.8.3 單股導(dǎo)線(xiàn)的阻抗分析175 4.8.4 信號(hào)線(xiàn)的敷設(shè)176 4.9 漏電干擾的防止措施177 4.10 抑制數(shù)字信號(hào)噪聲常用硬件措施177 4.10.1 數(shù)字信號(hào)負(fù)傳輸方式178 4.10.2 提高數(shù)字信號(hào)的電壓等級(jí)178 4.10.3 數(shù)字輸入信號(hào)的RC阻容濾波179 4.10.4 提高輸入端的門(mén)限電壓181 4.10.5 輸入開(kāi)關(guān)觸點(diǎn)抖動(dòng)干擾的抑制方法181 4.10.6 提高器件的驅(qū)動(dòng)能力184 4.11 靜電放電干擾及其抑制184 第5章 主機(jī)單元配置與抗干擾設(shè)計(jì) 5.1 單片機(jī)主機(jī)單元組成特點(diǎn)186 5.1.1 80C51最小應(yīng)用系統(tǒng)186 5.1.2 低功耗單片機(jī)最小應(yīng)用系統(tǒng)187 5.2 總線(xiàn)的可靠性設(shè)計(jì)191 5.2.1 總線(xiàn)驅(qū)動(dòng)器191 5.2.2 總線(xiàn)的負(fù)載平衡192 5.2.3 總線(xiàn)上拉電阻的配置192 5.3 芯片配置與抗干擾193 5.3.1去耦電容配置194 5.3.2 數(shù)字輸入端的噪聲抑制194 5.3.3 數(shù)字電路不用端的處理195 5.3.4 存儲(chǔ)器的布線(xiàn)196 5.4 譯碼電路的可靠性分析197 5.4.1 過(guò)渡干擾與譯碼選通197 5.4.2 譯碼方式與抗干擾200 5.5 時(shí)鐘電路配置200 5.6 復(fù)位電路設(shè)計(jì)201 5.6.1 復(fù)位電路RC參數(shù)的選擇201 5.6.2 復(fù)位電路的可靠性與抗干擾分析202 5.6.3 I/O接口芯片的延時(shí)復(fù)位205 5.7 單片機(jī)系統(tǒng)的中斷保護(hù)問(wèn)題205 5.7.1 80C51單片機(jī)的中斷機(jī)構(gòu)205 5.7.2 常用的幾種中斷保護(hù)措施205 5.8 RAM數(shù)據(jù)掉電保護(hù)207 5.8.1 片內(nèi)RAM數(shù)據(jù)保護(hù)207 5.8.2 利用雙片選的外RAM數(shù)據(jù)保護(hù)207 5.8.3 利用DS1210實(shí)現(xiàn)外RAM數(shù)據(jù)保護(hù)208 5.8.4 2 KB非易失性隨機(jī)存儲(chǔ)器DS1220AB/AD211 5.9 看門(mén)狗技術(shù)215 5.9.1 由單穩(wěn)態(tài)電路實(shí)現(xiàn)看門(mén)狗電路216 5.9.2 利用單片機(jī)片內(nèi)定時(shí)器實(shí)現(xiàn)軟件看門(mén)狗217 5.9.3 軟硬件結(jié)合的看門(mén)狗技術(shù)219 5.9.4 單片機(jī)內(nèi)配置看門(mén)狗電路221 5.10 微處理器監(jiān)控器223 5.10.1 微處理器監(jiān)控器MAX703~709/813L223 5.10.2 微處理器監(jiān)控器MAX791227 5.10.3 微處理器監(jiān)控器MAX807231 5.10.4 微處理器監(jiān)控器MAX690A/MAX692A234 5.10.5 微處理器監(jiān)控器MAX691A/MAX693A238 5.10.6 帶備份電池的微處理器監(jiān)控器MAX1691242 5.11 串行E2PROM X25045245 第6章 測(cè)量單元配置與抗干擾設(shè)計(jì) 6.1 概述255 6.2 模擬信號(hào)放大器256 6.2.1 集成運(yùn)算放大器256 6.2.2 測(cè)量放大器組成原理260 6.2.3 單片集成測(cè)量放大器AD521263 6.2.4 單片集成測(cè)量放大器AD522265 6.2.5 單片集成測(cè)量放大器AD526266 6.2.6 單片集成測(cè)量放大器AD620270 6.2.7 單片集成測(cè)量放大器AD623274 6.2.8 單片集成測(cè)量放大器AD624276 6.2.9 單片集成測(cè)量放大器AD625278 6.2.10 單片集成測(cè)量放大器AD626281 6.3 電壓/電流變換器(V/I)283 6.3.1 V/I變換電路..283 6.3.2 集成V/I變換器XTR101284 6.3.3 集成V/I變換器XTR110289 6.3.4 集成V/I變換器AD693292 6.3.5 集成V/I變換器AD694299 6.4 電流/電壓變換器(I/V)302 6.4.1 I/V變換電路302 6.4.2 RCV420型I/V變換器303 6.5 具有放大、濾波、激勵(lì)功能的模塊2B30/2B31305 6.6 模擬信號(hào)隔離放大器313 6.6.1 隔離放大器ISO100313 6.6.2 隔離放大器ISO120316 6.6.3 隔離放大器ISO122319 6.6.4 隔離放大器ISO130323 6.6.5 隔離放大器ISO212P326 6.6.6 由兩片VFC320組成的隔離放大器329 6.6.7 由兩光耦組成的實(shí)用線(xiàn)性隔離放大器333 6.7 數(shù)字電位器及其應(yīng)用336 6.7.1 非易失性數(shù)字電位器x9221336 6.7.2 非易失性數(shù)字電位器x9241343 6.8 傳感器供電電源的配置及抗干擾346 6.8.1 傳感器供電電源的擾動(dòng)補(bǔ)償347 6.8.2 單片集成精密電壓芯片349 6.8.3 A/D轉(zhuǎn)換器芯片提供基準(zhǔn)電壓350 6.9 測(cè)量單元噪聲抑制措施351 6.9.1 外部噪聲源的干擾及其抑制351 6.9.2 輸入信號(hào)串模干擾的抑制352 6.9.3 輸入信號(hào)共模干擾的抑制353 6.9.4 儀器儀表的接地噪聲355 第7章 D/A、A/D單元配置與抗干擾設(shè)計(jì) 7.1 D/A、A/D轉(zhuǎn)換器的干擾源357 7.2 D/A轉(zhuǎn)換原理及抗干擾分析358 7.2.1 T型電阻D/A轉(zhuǎn)換器359 7.2.2 基準(zhǔn)電源精度要求361 7.2.3 D/A轉(zhuǎn)換器的尖峰干擾362 7.3 典型D/A轉(zhuǎn)換器與單片機(jī)接口363 7.3.1 并行12位D/A轉(zhuǎn)換器AD667363 7.3.2 串行12位D/A轉(zhuǎn)換器MAX5154370 7.4 D/A轉(zhuǎn)換器與單片機(jī)的光電接口電路377 7.5 A/D轉(zhuǎn)換器原理與抗干擾性能378 7.5.1 逐次比較式ADC原理378 7.5.2 余數(shù)反饋比較式ADC原理378 7.5.3 雙積分ADC原理380 7.5.4 V/F ADC原理382 7.5.5 ∑Δ式ADC原理384 7.6 典型A/D轉(zhuǎn)換器與單片機(jī)接口387 7.6.18 位并行逐次比較式MAX 118387 7.6.28 通道12位A/D轉(zhuǎn)換器MAX 197394 7.6.3 雙積分式A/D轉(zhuǎn)換器5G14433399 7.6.4 V/F轉(zhuǎn)換器AD 652在A/D轉(zhuǎn)換器中的應(yīng)用403 7.7 采樣保持電路與抗干擾措施408 7.8 多路模擬開(kāi)關(guān)與抗干擾措施412 7.8.1 CD4051412 7.8.2 AD7501413 7.8.3 多路開(kāi)關(guān)配置與抗干擾技術(shù)413 7.9 D/A、A/D轉(zhuǎn)換器的電源、接地與布線(xiàn)416 7.10 精密基準(zhǔn)電壓電路與噪聲抑制416 7.10.1 基準(zhǔn)電壓電路原理417 7.10.2 引腳可編程精密基準(zhǔn)電壓源AD584418 7.10.3 埋入式齊納二極管基準(zhǔn)AD588420 7.10.4 低漂移電壓基準(zhǔn)MAX676/MAX677/MAX678422 7.10.5 低功率低漂移電壓基準(zhǔn)MAX873/MAX875/MAX876424 7.10.6 MC1403/MC1403A、MC1503精密電壓基準(zhǔn)電路430 第8章 功率接口與抗干擾設(shè)計(jì) 8.1 功率驅(qū)動(dòng)元件432 8.1.1 74系列功率集成電路432 8.1.2 75系列功率集成電路433 8.1.3 MOC系列光耦合過(guò)零觸發(fā)雙向晶閘管驅(qū)動(dòng)器435 8.2 輸出控制功率接口電路438 8.2.1 繼電器輸出驅(qū)動(dòng)接口438 8.2.2 繼電器—接觸器輸出驅(qū)動(dòng)電路439 8.2.3 光電耦合器—晶閘管輸出驅(qū)動(dòng)電路439 8.2.4 脈沖變壓器—晶閘管輸出電路440 8.2.5 單片機(jī)與大功率單相負(fù)載的接口電路441 8.2.6 單片機(jī)與大功率三相負(fù)載間的接口電路442 8.3 感性負(fù)載電路噪聲的抑制442 8.3.1 交直流感性負(fù)載瞬變?cè)肼暤囊种品椒?42 8.3.2 晶閘管過(guò)零觸發(fā)的幾種形式445 8.3.3 利用晶閘管抑制感性負(fù)載的瞬變?cè)肼?47 8.4 晶閘管變流裝置的干擾和抑制措施448 8.4.1 晶閘管變流裝置電氣干擾分析448 8.4.2 晶閘管變流裝置的抗干擾措施449 8.5 固態(tài)繼電器451 8.5.1 固態(tài)繼電器的原理和結(jié)構(gòu)451 8.5.2 主要參數(shù)與選用452 8.5.3 交流固態(tài)繼電器的使用454 第9章 人機(jī)對(duì)話(huà)單元配置與抗干擾設(shè)計(jì) 9.1 鍵盤(pán)接口抗干擾問(wèn)題456 9.2 LED顯示器的構(gòu)造與特點(diǎn)458 9.3 LED的驅(qū)動(dòng)方式459 9.3.1 采用限流電阻的驅(qū)動(dòng)方式459 9.3.2 采用LM317的驅(qū)動(dòng)方式460 9.3.3 串聯(lián)二極管壓降驅(qū)動(dòng)方式462 9.4 典型鍵盤(pán)/顯示器接口芯片與單片機(jī)接口463 9.4.1 8位LED驅(qū)動(dòng)器ICM 7218B463 9.4.2 串行LED顯示驅(qū)動(dòng)器MAX 7219468 9.4.3 并行鍵盤(pán)/顯示器專(zhuān)用芯片8279482 9.4.4 串行鍵盤(pán)/顯示器專(zhuān)用芯片HD 7279A492 9.5 LED顯示接口的抗干擾措施502 9.5.1 LED靜態(tài)顯示接口的抗干擾502 9.5.2 LED動(dòng)態(tài)顯示接口的抗干擾506 9.6 打印機(jī)接口與抗干擾技術(shù)508 9.6.1 并行打印機(jī)標(biāo)準(zhǔn)接口信號(hào)508 9.6.2 打印機(jī)與單片機(jī)接口電路509 9.6.3 打印機(jī)電磁干擾的防護(hù)設(shè)計(jì)510 9.6.4 提高數(shù)據(jù)傳輸可靠性的措施512 第10章 供電電源的配置與抗干擾設(shè)計(jì) 10.1 電源干擾問(wèn)題概述513 10.1.1 電源干擾的類(lèi)型513 10.1.2 電源干擾的耦合途徑514 10.1.3 電源的共模和差模干擾515 10.1.4 電源抗干擾的基本方法516 10.2 EMI電源濾波器517 10.2.1 實(shí)用低通電容濾波器518 10.2.2 雙繞組扼流圈的應(yīng)用518 10.3 EMI濾波器模塊519 10.3.1 濾波器模塊基礎(chǔ)知識(shí)519 10.3.2 電源濾波器模塊521 10.3.3 防雷濾波器模塊531 10.3.4 脈沖群抑制模塊532 10.4 瞬變干擾吸收器件532 10.4.1 金屬氧化物壓敏電阻(MOV)533 10.4.2 瞬變電壓抑制器(TVS)537 10.5 電源變壓器的屏蔽與隔離552 10.6 交流電源的供電抗干擾方案553 10.6.1 交流電源配電方式553 10.6.2 交流電源抗干擾綜合方案555 10.7 供電直流側(cè)抑制干擾措施555 10.7.1 整流電路的高頻濾波555 10.7.2 串聯(lián)型直流穩(wěn)壓電源配置與抗干擾556 10.7.3 集成穩(wěn)壓器使用中的保護(hù)557 10.8 開(kāi)關(guān)電源干擾的抑制措施559 10.8.1 開(kāi)關(guān)噪聲的分類(lèi)559 10.8.2 開(kāi)關(guān)電源噪聲的抑制措施560 10.9 微機(jī)用不間斷電源UPS561 10.10 采用晶閘管無(wú)觸點(diǎn)開(kāi)關(guān)消除瞬態(tài)干擾設(shè)計(jì)方案564 第11章 印制電路板的抗干擾設(shè)計(jì) 11.1 印制電路板用覆銅板566 11.1.1 覆銅板材料566 11.1.2 覆銅板分類(lèi)568 11.1.3 覆銅板的標(biāo)準(zhǔn)與電性能571 11.1.4 覆銅板的主要特點(diǎn)和應(yīng)用583 11.2 印制板布線(xiàn)設(shè)計(jì)基礎(chǔ)585 11.2.1 印制板導(dǎo)線(xiàn)的阻抗計(jì)算585 11.2.2 PCB布線(xiàn)結(jié)構(gòu)和特性阻抗計(jì)算587 11.2.3 信號(hào)在印制板上的傳播速度589 11.3 地線(xiàn)和電源線(xiàn)的布線(xiàn)設(shè)計(jì)590 11.3.1 降低接地阻抗的設(shè)計(jì)590 11.3.2 減小電源線(xiàn)阻抗的方法591 11.4 信號(hào)線(xiàn)的布線(xiàn)原則592 11.4.1 信號(hào)傳輸線(xiàn)的尺寸控制592 11.4.2 線(xiàn)間串?dāng)_控制592 11.4.3 輻射干擾的抑制593 11.4.4 反射干擾的抑制594 11.4.5 微機(jī)自動(dòng)布線(xiàn)注意問(wèn)題594 11.5 配置去耦電容的方法594 11.5.1 電源去耦595 11.5.2 集成芯片去耦595 11.6 芯片的選用與器件布局596 11.6.1 芯片選用指南596 11.6.2 器件的布局597 11.6.3 時(shí)鐘電路的布置598 11.7 多層印制電路板599 11.7.1 多層印制板的結(jié)構(gòu)與特點(diǎn)599 11.7.2 多層印制板的布局方案600 11.7.3 20H原則605 11.8 印制電路板的安裝和板間配線(xiàn)606 第12章 軟件抗干擾原理與方法 12.1 概述607 12.1.1 測(cè)控系統(tǒng)軟件的基本要求607 12.1.2 軟件抗干擾一般方法607 12.2 指令冗余技術(shù)608 12.2.1 NOP的使用609 12.2.2 重要指令冗余609 12.3 軟件陷阱技術(shù)609 12.3.1 軟件陷阱609 12.3.2 軟件陷阱的安排610 12.4 故障自動(dòng)恢復(fù)處理程序613 12.4.1 上電標(biāo)志設(shè)定614 12.4.2 RAM中數(shù)據(jù)冗余保護(hù)與糾錯(cuò)616 12.4.3 軟件復(fù)位與中斷激活標(biāo)志617 12.4.4 程序失控后恢復(fù)運(yùn)行的方法618 12.5 數(shù)字濾波619 12.5.1 程序判斷濾波法620 12.5.2 中位值濾波法620 12.5.3 算術(shù)平均濾波法621 12.5.4 遞推平均濾波法623 12.5.5 防脈沖干擾平均值濾波法624 12.5.6 一階滯后濾波法626 12.6 干擾避開(kāi)法627 12.7 開(kāi)關(guān)量輸入/輸出軟件抗干擾設(shè)計(jì)629 12.7.1 開(kāi)關(guān)量輸入軟件抗干擾措施629 12.7.2 開(kāi)關(guān)量輸出軟件抗干擾措施629 12.8 編寫(xiě)軟件的其他注意事項(xiàng)630 附錄 電磁兼容器件選購(gòu)信息632
標(biāo)簽: 單片機(jī) 應(yīng)用系統(tǒng) 抗干擾技術(shù)
上傳時(shí)間: 2013-10-20
上傳用戶(hù):xdqm
FPGA與ARM EPI通信,控制16路步進(jìn)電機(jī)和12路DC馬達(dá) VHDL編寫(xiě)的,,,,,
上傳時(shí)間: 2013-10-21
上傳用戶(hù):zhyfjj
基于VHDL語(yǔ)言的多種分頻程序
上傳時(shí)間: 2013-10-27
上傳用戶(hù):dongbaobao
頻譜分析儀的主要工作原理 接收到的中頻模擬信號(hào)經(jīng)過(guò)A/D轉(zhuǎn)換為14位的數(shù)字信 號(hào),首先對(duì)數(shù)字信號(hào)進(jìn)行數(shù)字下變頻(DDC),得到I路、Q路信號(hào),然后根據(jù)控制信號(hào)對(duì)I路、Q路信號(hào)進(jìn)行抽取濾波,使用CIC抽取濾波器完成,然后在分 別對(duì)I路、Q路信號(hào)分別進(jìn)行低通濾波,濾波器采用FIR濾波器和半帶濾波器相結(jié)合的方式,然后對(duì)信號(hào)進(jìn)行加窗、FFT(對(duì)頻譜進(jìn)行分析時(shí)進(jìn)行FFT運(yùn)算, 對(duì)功率譜進(jìn)行分析時(shí)不進(jìn)行FFT運(yùn)算)、I路和Q路平方求和、求平均。最后將輸出的數(shù)據(jù)送入到DSP中進(jìn)行顯示與控制的后續(xù)處理。
標(biāo)簽: Xilinx FPGA 多分辨率 頻譜分析儀
上傳時(shí)間: 2013-10-19
上傳用戶(hù):幾何公差
為了能實(shí)時(shí)監(jiān)控?zé)o人機(jī)的狀態(tài)和提高無(wú)人機(jī)的安全可靠性,本設(shè)計(jì)利用FPGA高速率、豐富的片上資源和靈活的設(shè)計(jì)接口,設(shè)計(jì)了一套無(wú)人機(jī)多路監(jiān)控系統(tǒng)。該監(jiān)控系統(tǒng)具備了將處于無(wú)人機(jī)不同位置的攝像機(jī)所采集的視頻信息,傳送給地面站控制設(shè)備,并在同一臺(tái)顯示器上實(shí)現(xiàn)同步顯示的功能。仿真結(jié)果表明,該系統(tǒng)可以很好的保證監(jiān)控視頻的實(shí)時(shí)性、和高清度,確保無(wú)人機(jī)完成偵查任務(wù)。
標(biāo)簽: FPGA 無(wú)人機(jī) 多路 視頻監(jiān)控
上傳時(shí)間: 2013-10-22
上傳用戶(hù):cxl274287265
蟲(chóng)蟲(chóng)下載站版權(quán)所有 京ICP備2021023401號(hào)-1