《計算機組成原理》是計算機系的一門核心課程。但是它涉及的知識面非常廣,內(nèi)容包括中央處理器、指令系統(tǒng)、存儲系統(tǒng)、總線和輸入輸出系統(tǒng)等方面,學生在學習該課程時,普遍覺得內(nèi)容抽象難于理解。但借助于該計算機組成原理實驗系統(tǒng),學生通過實驗環(huán)節(jié),可以進一步融會貫通學習內(nèi)容,掌握計算機各模塊的工作原理,相互關(guān)系的來龍去脈。 為了增強實驗系統(tǒng)的功能,提高系統(tǒng)的靈活性,降低實驗成本,我們采用FPGA芯片技術(shù)來徹底更新現(xiàn)有的計算器組成原理實驗平臺。該技術(shù)可根據(jù)用戶要求為芯片加載由VHDL語言所編寫出的不同的硬件邏輯,F(xiàn)PGA芯片具有重復編程能力,使得系統(tǒng)內(nèi)硬件的功能可以像軟件一樣被編程,這種稱為“軟”硬件的全新系統(tǒng)設計概念,使實驗系統(tǒng)具有極強的靈活性和適應性。它不僅使該系統(tǒng)性能的改進和擴充變得十分簡易和方便,而且使學生自己設計不同的實驗變?yōu)榭赡堋S嬎銠C組成原理實驗的最終目的是讓學生能夠設計CPU,但首先,學生必須知道CPU的各個功能部件是如何工作,以及相互之間是如何配合構(gòu)成CPU的。因此,我們必須先設計出一個教學用的以FPGA芯片為核心的硬件平臺,然后在此基礎上開發(fā)出VHDL部件庫及主要邏輯功能,并設計出一套實驗。 本文重點研究了基于FPGA芯片的VHDL硬件系統(tǒng),由于VHDL的高標準化和硬件描述能力,現(xiàn)代CPU的主要功能如計算,存儲,I/O操作等均可由VHDL來實現(xiàn)。同時設計實驗內(nèi)容,包括時序電路的組成及控制原理實驗、八位運算器的組成及復合運算實驗、存儲器實驗、數(shù)據(jù)通路實驗、浮點運算器實驗、多流水線處理器實驗等,這些實驗形成一個相互關(guān)聯(lián)的系統(tǒng)。每個實驗先由教師講解原理及原理圖,學生根據(jù)教師提供的原理圖,自己用MAX+PLUSII完成電路輸入,學生實驗實際上是編寫VHDL,不需要寫得很復雜,只要能調(diào)用接口,然后將程序燒入平臺,這樣既不會讓學生花太多的時間在畫電路圖上,又能讓學生更好的理解每個部件的工作原理和工作過程。 論文首先研究分析了FPGA硬件實驗平臺,即實驗系統(tǒng)的硬件組成。系統(tǒng)采用FPGA-XC4010EPC84,62256CPLD以及其他外圍芯片(例如74LS244,74LS275)組成。根據(jù)不同的實驗要求,規(guī)劃不同實驗控制邏輯。用戶可選擇不同的實驗邏輯,通過把實驗邏輯下載到FPGA芯片中構(gòu)成自己的實驗平臺。 其次,論文詳細的闡述了VHDL模塊化設計,如何運用VHDL技術(shù)來依次實現(xiàn)CPU的各個功能部件。VHDL語言作為一種國際標準化的硬件描述語言,自1987年獲得IEEE批準以來,經(jīng)過了1993年和2001年兩次修改,至今已被眾多的國際知名電子設計自動化(EDA)工具研發(fā)商所采用,并隨同EDA設計工具一起廣泛地進入了數(shù)字系統(tǒng)設計與研發(fā)領(lǐng)域,目前已成為電子業(yè)界普遍接受的一種硬件設計技術(shù)。再次,論文針對實驗平臺中遇到的較為棘手的多流水線等問題,也進行了深入的闡述和剖析。學生需要什么樣的實驗條件,實驗內(nèi)容及步驟才能了解當今CPU所采用的核心技術(shù),才能掌握CPU的設計,運行原理。另外,本論文的背景是需要學生熟悉基本的VHDL知識或技能,因為實驗是在編寫VHDL代碼的前提下完成的。 本文在基于實驗室的環(huán)境下,基本上較為完整的實現(xiàn)了一個基于FPGA的實驗平臺方案。在此基礎上,進行了部分功能的測試和部分性能方面的分析。本論文的研究,為FPGA在實際系統(tǒng)中的應用提供研究思路和參考方案。論文的研究結(jié)果將對FPGA與VHDL標準的進一步發(fā)展具有重要的理論和現(xiàn)實意義。
標簽:
計算機組成
實驗
上傳時間:
2013-04-24
上傳用戶:小強mmmm