隨著圖像處理技術(shù)和投影技術(shù)的不斷發(fā)展,人們對高沉浸感的虛擬現(xiàn)實場景提出了更高的要求,這種虛擬顯示的場景往往由多通道的投影儀器同時在屏幕上投影出多幅高清晰的圖像,再把這些單獨的圖像拼接在一起組成一幅大場景的圖像。而為了給人以逼真的效果,投影的屏幕往往被設(shè)計為柱面屏幕,甚至是球面屏幕。當圖像投影在柱面屏幕的時候就會發(fā)生幾何形狀的變化,而避免這種幾何變形的就是圖像拼接過程中的幾何校正和邊緣融合技術(shù)。 一個大場景可視化系統(tǒng)由投影機、投影屏幕、圖像融合機等主要模塊組成。在虛擬現(xiàn)實應用系統(tǒng)中,要實現(xiàn)高臨感的多屏幕無縫拼接以及曲面組合顯示,顯示系統(tǒng)還需要運用幾何數(shù)字變形及邊緣融合等圖像處理技術(shù),實現(xiàn)諸如在平面、柱面、球面等投影顯示面上顯示圖像。而關(guān)鍵設(shè)備在于圖像融合機,它實時采集圖形服務器,或者PC的圖像信號,通過圖像處理模塊對圖像信息進行幾何校正和邊緣融合,在處理完成后再送到顯示設(shè)備。 本課題提出了一種基于FPGA技術(shù)的圖像處理系統(tǒng)。該系統(tǒng)實現(xiàn)圖像數(shù)據(jù)的AiD采集、圖像數(shù)據(jù)在SRAM以及SDRAM中的存取、圖像在FPGA內(nèi)部的DSP運算以及圖像數(shù)據(jù)的D/A輸出。系統(tǒng)設(shè)計的核心部分在于系統(tǒng)的控制以及數(shù)字信號的處理。本課題采用XilinxVirtex4系列FPGA作為主處理芯片,并利用VerilogHDL硬件描述語言在FPGA內(nèi)部設(shè)計了A/D模塊、D/A模塊、SRAM、SDRAM以及ARM處理器的控制器邏輯。 本課題在FPGA圖像處理系統(tǒng)中設(shè)計了一個ARM處理器模塊,用于上電時對系統(tǒng)在圖像變化處理時所需參數(shù)進行傳遞,并能實時從上位機更新參數(shù)。該設(shè)計在提高了系統(tǒng)性能的同時也便于系統(tǒng)擴展。 本文首先介紹了圖像處理過程中的幾何變化和圖像融合的算法,接著提出了系統(tǒng)的設(shè)計方案及模塊劃分,然后圍繞FPGA的設(shè)計介紹了SDRAM控制器的設(shè)計方法,最后介紹了ARM處理器的接口及外圍電路的設(shè)計。
上傳時間: 2013-04-24
上傳用戶:1047385479
差分跳頻(DFH)是集跳頻圖案、信息調(diào)制與解調(diào)于一體,是一個全面基于數(shù)字信號處理的全新概念的通信系統(tǒng),其技術(shù)體制和原理與常規(guī)跳頻完全不同,較好地解決了數(shù)據(jù)速率和跟蹤干擾等問題,代表了當前短波通信的一個重要發(fā)展方向。美國Sanders公司推出了名為CHESS的新型短波跳頻通信系統(tǒng),并獲得了成功,但我國對該體制和技術(shù)的研究還處于初始階段,目前還不太成熟,離實際應用還有一段距離。 本文主要基于FPGA芯片的基礎(chǔ)上對差分跳頻進行了研究,用FPGA來實現(xiàn)數(shù)字信號處理可以很好地解決并行性和速度問題,而且其靈活的可配置特性,使得FPGA構(gòu)成的DSP系統(tǒng)非常易于修改、測試及硬件升級。而且設(shè)計中盡量采用軟件無線電體系結(jié)構(gòu),減少模擬環(huán)節(jié),把數(shù)字化處理盡量靠近天線,從而建立一個通用、標準、模塊化的硬件平臺,用軟件編程來實現(xiàn)差分跳頻的各種功能,從基于硬件的設(shè)計方法中解放出來。 本文首先介紹了課題背景及研究的意義,闡述了目前差分跳頻中頻率合成跟頻率識別的實現(xiàn)方案。在頻率合成中,著重對DDS的相位截斷誤差及幅度量化誤差進行仿真,找出基于FPGA實現(xiàn)的最佳參數(shù)及改善方法。在頻率識別中,基于Xilinx公司提供FFT IP核,接收端中的位同步,頻率識別均在FFT的理論上進行設(shè)計。最后根據(jù)設(shè)計方案制作基于FPGA的電路板。 設(shè)計中跳頻圖案、直接數(shù)字頻率合成器、頻率識別、位同步、跳頻圖案恢復、線性調(diào)頻z變換等模塊均采用Verilog和VHDL兩種通用硬件描述語言進行設(shè)計,以便能夠在所有廠家的FPGA芯片中移植。
上傳時間: 2013-07-22
上傳用戶:yezhihao
擴頻通信技術(shù)是信息時代的三大高技術(shù)通信傳輸方式之一,與常規(guī)的通信技術(shù)相比。具有低截獲率、強抗噪聲、抗干擾性,具有信息隱蔽和多址通信等特點,目前已從軍事領(lǐng)域向民用領(lǐng)域迅速發(fā)展。在民用化之后,它被迅速推廣到各種公用和專用通信網(wǎng)絡(luò)之中,如衛(wèi)星通信、數(shù)據(jù)傳輸、定位、測距等系統(tǒng)中。 擴頻通信技術(shù)中,最常見的是直接序列擴頻通信(DSSS)系統(tǒng),然而目前專用擴頻芯片大部分功能都已固化。缺少產(chǎn)品開發(fā)的靈活性。其次,目前用FPGA與DSP相結(jié)合實現(xiàn)的直接序列擴頻的收發(fā)系統(tǒng)比較多,系統(tǒng)復雜且成本高。另外,現(xiàn)代擴頻通信系統(tǒng)在接收和發(fā)送端需要完成許多快速復雜的信號處理,這對電路的可靠性和處理速度提出了更高的要求。因此,設(shè)計一個全部用FPGA技術(shù)實現(xiàn)的擴頻通信收、發(fā)系統(tǒng)具有較強的實際應用價值。 根據(jù)FPGA的高速并行處理能力和全硬件實現(xiàn)的特點,采用直接序列擴頻技術(shù),借助QuartusⅡ6.0及Protel99se工具,完成了系統(tǒng)的軟件仿真和硬件電路設(shè)計。實驗結(jié)果表明,比用傳統(tǒng)的FPGA與DSP相結(jié)合實現(xiàn)方式,提高了處理速度,減少了硬件延時。同時采用了流水線技術(shù),提高了系統(tǒng)并行處理的能力。并且系統(tǒng)功能可以通過程序來修改和升級,與專用擴頻芯片相比,具有很大的靈活性。所有模塊都集成在一個芯片中,提高了系統(tǒng)的穩(wěn)定性和可靠性。
上傳時間: 2013-05-18
上傳用戶:天天天天
正交頻分復用(OFDM)技術(shù)是一種多載波數(shù)字調(diào)制技術(shù),具有頻譜利用率高、抗多徑干擾能力強、成本低等特點,適合無線通信的高速化、寬帶化及移動化的需求,將成為下一代無線通信系統(tǒng)(4G)的核心調(diào)制傳輸技術(shù)。 本文首先描述了OFDM技術(shù)的基本原理。對OFDM的調(diào)制解調(diào)以及其中涉及的特性和關(guān)鍵技術(shù)等做了理論上的分析,指出了OFDM區(qū)別于其他調(diào)制技術(shù)的巨大優(yōu)勢;然后針對OFDM中的信道估計技術(shù),深入分析了基于FFT級聯(lián)的信道估計理論和基于聯(lián)合最大似然函數(shù)的半盲分組估計理論,在此基礎(chǔ)上詳細研究描述了用于OFDM系統(tǒng)的迭代的最大似然估計算法,并利用Matlab做了相應的仿真比較,驗證了它們的有效性。 而后,在Matlab中應用Simulink工具構(gòu)建OFDM系統(tǒng)仿真平臺。在此平臺上,對OFDM系統(tǒng)在多徑衰落、高斯白噪聲等多種不同的模型參數(shù)下進行了仿真,并給出了數(shù)據(jù)曲線,通過分析結(jié)果可正確評價OFDM系統(tǒng)在多個方面的性能。 在綜合了OFDM的系統(tǒng)架構(gòu)和仿真分析之后,設(shè)計并實現(xiàn)了基于FPGA的OFDM調(diào)制解調(diào)系統(tǒng)。首先根據(jù)802.16協(xié)議和OFDM系統(tǒng)的具體要求,設(shè)定了合理的參數(shù);然后從調(diào)制器和解調(diào)器的具體組成模塊入手,對串/并轉(zhuǎn)換,QPSK映射,過采樣處理,插入導頻,添加循環(huán)前綴,IFFT/FFT,幀同步檢測等各個模塊進行硬件設(shè)計,詳細介紹了各個模塊的設(shè)計和實現(xiàn)過程,并給出了相應的仿真波形和參數(shù)說明。其中,針對定點運算的局限性,為系統(tǒng)設(shè)計并自定義了24位的浮點運算格式,參與傅立葉反變換和傅立葉變換的運算,在系統(tǒng)參數(shù)允許的范圍內(nèi),充分利用了有限資源,提高了系統(tǒng)運算精度;然后重點描述了基于FPGA的快速傅立葉變換算法的改進、優(yōu)化和設(shè)計實現(xiàn),針對原始快速傅立葉變換FPGA實現(xiàn)算法運算空閑時間過多,資源占用較大的問題,提出了帶有流水作業(yè)功能、資源占用較少的快速傅立葉變換優(yōu)化算法設(shè)計方案,使之運用于OFDM基帶處理系統(tǒng)當中并加以實現(xiàn),結(jié)果滿足系統(tǒng)參數(shù)的需求。最后以理論分析為依據(jù),對整個OFDM的基帶處理系統(tǒng)進行了系統(tǒng)調(diào)試與性能分析,證明了設(shè)計的可行性。 綜上所述,本文完成了一個基于FPGA的OFDM基帶處理系統(tǒng)的設(shè)計、仿真和實現(xiàn)。本設(shè)計為OFDM通信系統(tǒng)的進一步改進提供了大量有用的數(shù)據(jù)。
標簽: FPGA OFDM 調(diào)制解調(diào)器
上傳時間: 2013-04-24
上傳用戶:vaidya1bond007b1
《計算機組成原理》是計算機系的一門核心課程。但是它涉及的知識面非常廣,內(nèi)容包括中央處理器、指令系統(tǒng)、存儲系統(tǒng)、總線和輸入輸出系統(tǒng)等方面,學生在學習該課程時,普遍覺得內(nèi)容抽象難于理解。但借助于該計算機組成原理實驗系統(tǒng),學生通過實驗環(huán)節(jié),可以進一步融會貫通學習內(nèi)容,掌握計算機各模塊的工作原理,相互關(guān)系的來龍去脈。 為了增強實驗系統(tǒng)的功能,提高系統(tǒng)的靈活性,降低實驗成本,我們采用FPGA芯片技術(shù)來徹底更新現(xiàn)有的計算器組成原理實驗平臺。該技術(shù)可根據(jù)用戶要求為芯片加載由VHDL語言所編寫出的不同的硬件邏輯,F(xiàn)PGA芯片具有重復編程能力,使得系統(tǒng)內(nèi)硬件的功能可以像軟件一樣被編程,這種稱為“軟”硬件的全新系統(tǒng)設(shè)計概念,使實驗系統(tǒng)具有極強的靈活性和適應性。它不僅使該系統(tǒng)性能的改進和擴充變得十分簡易和方便,而且使學生自己設(shè)計不同的實驗變?yōu)榭赡堋S嬎銠C組成原理實驗的最終目的是讓學生能夠設(shè)計CPU,但首先,學生必須知道CPU的各個功能部件是如何工作,以及相互之間是如何配合構(gòu)成CPU的。因此,我們必須先設(shè)計出一個教學用的以FPGA芯片為核心的硬件平臺,然后在此基礎(chǔ)上開發(fā)出VHDL部件庫及主要邏輯功能,并設(shè)計出一套實驗。 本文重點研究了基于FPGA芯片的VHDL硬件系統(tǒng),由于VHDL的高標準化和硬件描述能力,現(xiàn)代CPU的主要功能如計算,存儲,I/O操作等均可由VHDL來實現(xiàn)。同時設(shè)計實驗內(nèi)容,包括時序電路的組成及控制原理實驗、八位運算器的組成及復合運算實驗、存儲器實驗、數(shù)據(jù)通路實驗、浮點運算器實驗、多流水線處理器實驗等,這些實驗形成一個相互關(guān)聯(lián)的系統(tǒng)。每個實驗先由教師講解原理及原理圖,學生根據(jù)教師提供的原理圖,自己用MAX+PLUSII完成電路輸入,學生實驗實際上是編寫VHDL,不需要寫得很復雜,只要能調(diào)用接口,然后將程序燒入平臺,這樣既不會讓學生花太多的時間在畫電路圖上,又能讓學生更好的理解每個部件的工作原理和工作過程。 論文首先研究分析了FPGA硬件實驗平臺,即實驗系統(tǒng)的硬件組成。系統(tǒng)采用FPGA-XC4010EPC84,62256CPLD以及其他外圍芯片(例如74LS244,74LS275)組成。根據(jù)不同的實驗要求,規(guī)劃不同實驗控制邏輯。用戶可選擇不同的實驗邏輯,通過把實驗邏輯下載到FPGA芯片中構(gòu)成自己的實驗平臺。 其次,論文詳細的闡述了VHDL模塊化設(shè)計,如何運用VHDL技術(shù)來依次實現(xiàn)CPU的各個功能部件。VHDL語言作為一種國際標準化的硬件描述語言,自1987年獲得IEEE批準以來,經(jīng)過了1993年和2001年兩次修改,至今已被眾多的國際知名電子設(shè)計自動化(EDA)工具研發(fā)商所采用,并隨同EDA設(shè)計工具一起廣泛地進入了數(shù)字系統(tǒng)設(shè)計與研發(fā)領(lǐng)域,目前已成為電子業(yè)界普遍接受的一種硬件設(shè)計技術(shù)。再次,論文針對實驗平臺中遇到的較為棘手的多流水線等問題,也進行了深入的闡述和剖析。學生需要什么樣的實驗條件,實驗內(nèi)容及步驟才能了解當今CPU所采用的核心技術(shù),才能掌握CPU的設(shè)計,運行原理。另外,本論文的背景是需要學生熟悉基本的VHDL知識或技能,因為實驗是在編寫VHDL代碼的前提下完成的。 本文在基于實驗室的環(huán)境下,基本上較為完整的實現(xiàn)了一個基于FPGA的實驗平臺方案。在此基礎(chǔ)上,進行了部分功能的測試和部分性能方面的分析。本論文的研究,為FPGA在實際系統(tǒng)中的應用提供研究思路和參考方案。論文的研究結(jié)果將對FPGA與VHDL標準的進一步發(fā)展具有重要的理論和現(xiàn)實意義。
上傳時間: 2013-04-24
上傳用戶:小強mmmm
本文設(shè)計和實現(xiàn)了基于FPGA的數(shù)字下變頻器DDC,用于寬帶數(shù)字中頻軟件無線電接收機中。采用自上向下的模塊化設(shè)計方法,將DDC的功能劃分為基本單元,實現(xiàn)這些功能模塊并組成模塊庫。在具體應用時,優(yōu)化配置各個模塊來滿足具體無線通信系統(tǒng)性能的要求。這樣做比傳統(tǒng)ASIC數(shù)字下變頻器具有更好的可編程性和靈活性,從而滿足不同的工程設(shè)計需求。 首先闡述了軟件無線電中關(guān)鍵的數(shù)字信號處理技術(shù),包括中頻處理中的下變頻技術(shù)、抽取技術(shù)以及帶通采樣技術(shù)。利用MATLAB的Simulink完成了對系統(tǒng)的設(shè)計與仿真,驗證了設(shè)計的正確性。之后用QuartusII進行了基于FPGA抽取濾波器和NCO等關(guān)鍵模塊的設(shè)計,編譯后進行了時序仿真,最后在PCB板上實現(xiàn)了實際電路并應用于工程項目中。
標簽: FPGA 數(shù)字下變頻
上傳時間: 2013-08-05
上傳用戶:lishuoshi1996
隨著數(shù)字圖像處理的應用領(lǐng)域不斷擴大,實時處理技術(shù)成為研究的熱點。VLSI技術(shù)的迅猛發(fā)展為數(shù)字圖像實時處理技術(shù)提供了硬件基礎(chǔ)。其中FPGA(現(xiàn)場可編程門陣列)的特點使其在圖像采集和處理方面的應用顯得更加經(jīng)濟、靈活、方便。 本文設(shè)計了一種以FPGA為工作核心,并實現(xiàn)了PCI接口的圖像采集壓縮系統(tǒng)。整個系統(tǒng)采用了自頂向下的設(shè)計方案,先把系統(tǒng)分成了三大塊,即圖像采集、PCI接口和圖像壓縮,然后分別設(shè)計各個大模塊中的子模塊。 首先,利用FPGA對專用視頻轉(zhuǎn)換器SAA7111A進行控制,因為SAA7111A是采用IC總線模塊,從而完成了對SAA7111A的控制,并通過設(shè)計圖像采集模塊、讀/寫數(shù)據(jù)模塊、總線管理模塊等,實現(xiàn)把標準的模擬視頻信號轉(zhuǎn)換成數(shù)字視頻信號并采集的功能。 其次,在了解PCI規(guī)范的前提下,深入地分析了PCI時序和地址配置空間等,設(shè)計了簡化邏輯的狀態(tài)機,并用VHDL硬件描述語言設(shè)計了程序,完成了簡化邏輯的PCI接口設(shè)計在FPGA芯片內(nèi)部的實現(xiàn),達到了一33MHz、32位數(shù)據(jù)寬度、支持猝發(fā)傳輸?shù)腜CI從設(shè)備模塊的接口功能,與傳統(tǒng)的使用PCI專用接口芯片來實現(xiàn)的PCI接口比較來看,更加節(jié)約了系統(tǒng)的邏輯資源,降低了成本,增加了設(shè)計的靈活性。 再次,設(shè)計了WINDOWS下對PCI接口的驅(qū)動程序。驅(qū)動程序可以選擇不同的方法來完成,當然每個方法都有自己的特點,對幾種主要設(shè)計驅(qū)動程序的方法作以比較之后,本文選擇了使用DRIVER WORKS工具來完成。通過對配置空間的設(shè)計、系統(tǒng)端口和內(nèi)存映射的設(shè)計、中斷服務的設(shè)計等,用VC++語言編寫了驅(qū)動程序。 最后,考慮到增加系統(tǒng)的實用性和完備性,還填加設(shè)計了圖像的壓縮部分。這部分需要完成的工作是在上述系統(tǒng)完成后,再額外地把采集來的視頻數(shù)據(jù)通過另一路數(shù)據(jù)通道按照一定的格式壓縮后存儲到硬盤中。本系統(tǒng)中,這部分設(shè)計是利用Altera公司提供的IP核來完成壓縮的,同時還用VHDL語言在FPGA上設(shè)計了IDE硬盤接口,使壓縮后的數(shù)據(jù)存儲到硬盤中。
上傳時間: 2013-06-01
上傳用戶:程嬰sky
本文完成了一種高速高性能數(shù)字脈沖壓縮處理器的設(shè)計和FPGA實現(xiàn),包括系統(tǒng)架構(gòu)設(shè)計、方案論證及仿真、算法實現(xiàn)、結(jié)果的測試等。 緒論部分首先闡明了本課題研究的背景和意義,概述了雷達數(shù)字脈沖壓縮系統(tǒng)的主要研究內(nèi)容,關(guān)鍵技術(shù)及其發(fā)展趨勢,然后介紹了數(shù)字脈沖壓縮系統(tǒng)設(shè)計與實現(xiàn)的要求,最后給出了本文的主要研究內(nèi)容。 第二章敘述了線性調(diào)頻信號脈沖壓縮的基本原理,對系統(tǒng)設(shè)計的實現(xiàn)方法進行了實時性方面的論證,并基于MATLAB做了仿真分析。 第三章從數(shù)字系統(tǒng)結(jié)構(gòu)化設(shè)計方面將本系統(tǒng)劃分為三個部分:輸入部分、脈壓計算部分、輸出部分,并在流程圖中對各部分所要實現(xiàn)的功能做了介紹。 第四章首先總結(jié)了數(shù)字脈沖壓縮的實現(xiàn)途徑;提出了基于自定制浮點數(shù)據(jù)格式和分時復用蝶型結(jié)構(gòu)的數(shù)字脈沖壓縮系統(tǒng)設(shè)計思想,對其關(guān)鍵技術(shù)進行了深入的研究。 第五章對輸入輸出模塊的功能做了詳細的描述,設(shè)計了具體的結(jié)構(gòu)和電路。 第六章針對系統(tǒng)的測試驗證,提出面向SOC的模塊驗證和系統(tǒng)軟硬協(xié)同驗證的驗證策略。通過Link for Modelsim工具,實現(xiàn)MATAB與Modelsim之間對VHDL代碼的聯(lián)合仿真測試,通過在線邏輯分析工具ChipScope,完成系統(tǒng)的片上測試,并分析系統(tǒng)的性能,證明系統(tǒng)的可實用性。滿足設(shè)計的要求。 本文研制的數(shù)字脈沖壓縮處理器具有動態(tài)范圍大、處理精度高、處理能力強、體積小、重量輕、實時性好的優(yōu)點,為設(shè)計高性能的現(xiàn)代雷達信號處理系統(tǒng)提供了可靠的保證。
標簽: 線性調(diào)頻信號 脈沖壓縮
上傳時間: 2013-07-01
上傳用戶:lingduhanya
可靠通信要求消息從信源到信宿盡量無誤傳輸,這就要求通信系統(tǒng)具有很好的糾錯能力,如使用差錯控制編碼。自仙農(nóng)定理提出以來,先后有許多糾錯編碼被相繼提出,例如漢明碼,BCH碼和RS碼等,而C。Berrou等人于1993年提出的Turbo碼以其優(yōu)異的糾錯性能成為通信界的一個里程碑。 然而,Turbo碼迭代譯碼復雜度大,導致其譯碼延時大,故而在工程中的應用受到一定限制,而并行Turbo譯碼可以很好地解決上述問題。本論文的主要工作是通過硬件實現(xiàn)一種基于幀分裂和歸零處理的新型并行Turbo編譯碼算法。論文提出了一種基于多端口存儲器的并行子交織器解決方法,很好地解決了并行訪問存儲器沖突的問題。 本論文在現(xiàn)場可編程門陣列(FPGA)平臺上實現(xiàn)了一種基于幀分裂和籬笆圖歸零處理的并行Turbo編譯碼器。所實現(xiàn)的并行Turbo編譯碼器在時鐘頻率為33MHz,幀長為1024比特,并行子譯碼器數(shù)和最大迭代次數(shù)均為4時,可支持8.2Mbps的編譯碼數(shù)掘吞吐量,而譯碼時延小于124us。本文還使用EP2C35FPGA芯片設(shè)計了系統(tǒng)開發(fā)板。該開發(fā)板可提供高速以太網(wǎng)MAC/PHY和PCI接口,很好地滿足了通信系統(tǒng)需求。系統(tǒng)測試結(jié)果表明,本文所實現(xiàn)的并行Turbo編譯碼器及其開發(fā)板運行正確、有效且可靠。 本論文主要分為五章,第一章為緒論,介紹Turbo碼背景和硬件實現(xiàn)相關(guān)技術(shù)。第二章為基于幀分裂和歸零的并行Turbo編碼的設(shè)計與實現(xiàn),分別介紹了編碼器和譯碼器的RTL設(shè)計,還提出了一種基于多端口存儲器的并行子交織器和解交織器設(shè)計。第三章討論了使用NIOS處理器的SOC架構(gòu),使用SOC架構(gòu)處理系統(tǒng)和基于NIOSII處理器和uC/0S一2操作系統(tǒng)的架構(gòu)。第四章介紹了FPGA系統(tǒng)開發(fā)板設(shè)計與調(diào)試的一些工作。最后一章為本文總結(jié)及其展望。
上傳時間: 2013-04-24
上傳用戶:ziyu_job1234
自適應濾波器是智能天線技術(shù)中核心部分-自適應波束成形器的關(guān)鍵技術(shù),算法的高效穩(wěn)定性及硬件時鐘速率的快慢是判斷波束成形器性能優(yōu)劣的主要標準。 首先選取工程領(lǐng)域最常用的自適應橫向LMS濾波算法作為研究對象,提出了利用最小均方誤差意義下自適應濾波器的輸出信號與主通道噪聲信號的等效關(guān)系,得到濾波器最佳自適應參數(shù)的方法。并分析了在平穩(wěn)和非平穩(wěn)環(huán)境噪聲下,濾波器的收斂速度、權(quán)系數(shù)穩(wěn)定性、跟蹤輸入信號的能力和信噪比的改善等特性。 在分析梯度自適應格型算法的基礎(chǔ)上,提出利用最佳反射系數(shù)的收斂性和穩(wěn)定性,得到了梯度自適應格型濾波器的定步長改進方法;并以改進的梯度自適應格型和線性組合器組成梯度自適應格型聯(lián)合處理算法,在同樣環(huán)境噪聲下,相比自適應橫向LMS算法,其各項性能指標都得到了極大地改善,而且有利于節(jié)省硬件資源。 設(shè)計了自適應橫向LMS濾波器和梯度自適應格型聯(lián)合處理濾波器的電路模型,并用馳豫超前技術(shù)對兩類濾波器進行了流水線優(yōu)化。利用Altera公司的CycloneⅡ系列EP2C5T144C6芯片和多種EDA工具,完成了濾波器的FPGA硬件設(shè)計與仿真實現(xiàn)。并以FPGA實現(xiàn)的3節(jié)梯度自適應格型聯(lián)合處理器為核心,設(shè)計了一種TD-SCDMA系統(tǒng)的自適應波束成形器,分析表明可以很好地利用系統(tǒng)提供的參考信號對下行波束進行自適應成形。
上傳時間: 2013-07-16
上傳用戶:xyipie
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1