Hopfield 網(wǎng)——擅長于聯(lián)想記憶與解迷路 實現(xiàn)H網(wǎng)聯(lián)想記憶的關(guān)鍵,是使被記憶的模式樣本對應(yīng)網(wǎng)絡(luò)能量函數(shù)的極小值。 設(shè)有M個N維記憶模式,通過對網(wǎng)絡(luò)N個神經(jīng)元之間連接權(quán) wij 和N個輸出閾值θj的設(shè)計,使得: 這M個記憶模式所對應(yīng)的網(wǎng)絡(luò)狀態(tài)正好是網(wǎng)絡(luò)能量函數(shù)的M個極小值。 比較困難,目前還沒有一個適應(yīng)任意形式的記憶模式的有效、通用的設(shè)計方法。 H網(wǎng)的算法 1)學(xué)習(xí)模式——決定權(quán)重 想要記憶的模式,用-1和1的2值表示 模式:-1,-1,1,-1,1,1,... 一般表示: 則任意兩個神經(jīng)元j、i間的權(quán)重: wij=∑ap(i)ap(j),p=1…p; P:模式的總數(shù) ap(s):第p個模式的第s個要素(-1或1) wij:第j個神經(jīng)元與第i個神經(jīng)元間的權(quán)重 i = j時,wij=0,即各神經(jīng)元的輸出不直接返回自身。 2)想起模式: 神經(jīng)元輸出值的初始化 想起時,一般是未知的輸入。設(shè)xi(0)為未知模式的第i個要素(-1或1) 將xi(0)作為相對應(yīng)的神經(jīng)元的初始值,其中,0意味t=0。 反復(fù)部分:對各神經(jīng)元,計算: xi (t+1) = f (∑wijxj(t)-θi), j=1…n, j≠i n—神經(jīng)元總數(shù) f()--Sgn() θi—神經(jīng)元i發(fā)火閾值 反復(fù)進行,直到各個神經(jīng)元的輸出不再變化。
標簽:
Hopfield
聯(lián)想
上傳時間:
2015-03-16
上傳用戶:JasonC