TLC2543是TI公司的12位串行模數轉換器,使用開關電容逐次逼近技術完成A/D轉換過程。由于是串行輸入結構,能夠節省51系列單片機I/O資源;且價格適中,分辨率較高,因此在儀器儀表中有較為廣泛的應用。 TLC2543的特點 (1)12位分辯率A/D轉換器; (2)在工作溫度范圍內10μs轉換時間; (3)11個模擬輸入通道; (4)3路內置自測試方式; (5)采樣率為66kbps; (6)線性誤差±1LSBmax; (7)有轉換結束輸出EOC; (8)具有單、雙極性輸出; (9)可編程的MSB或LSB前導; (10)可編程輸出數據長度。 TLC2543的引腳排列及說明 TLC2543有兩種封裝形式:DB、DW或N封裝以及FN封裝,這兩種封裝的引腳排列如圖1,引腳說明見表1 TLC2543電路圖和程序欣賞 #include<reg52.h> #include<intrins.h> #define uchar unsigned char #define uint unsigned int sbit clock=P1^0; sbit d_in=P1^1; sbit d_out=P1^2; sbit _cs=P1^3; uchar a1,b1,c1,d1; float sum,sum1; double sum_final1; double sum_final; uchar duan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar wei[]={0xf7,0xfb,0xfd,0xfe}; void delay(unsigned char b) //50us { unsigned char a; for(;b>0;b--) for(a=22;a>0;a--); } void display(uchar a,uchar b,uchar c,uchar d) { P0=duan[a]|0x80; P2=wei[0]; delay(5); P2=0xff; P0=duan[b]; P2=wei[1]; delay(5); P2=0xff; P0=duan[c]; P2=wei[2]; delay(5); P2=0xff; P0=duan[d]; P2=wei[3]; delay(5); P2=0xff; } uint read(uchar port) { uchar i,al=0,ah=0; unsigned long ad; clock=0; _cs=0; port<<=4; for(i=0;i<4;i++) { d_in=port&0x80; clock=1; clock=0; port<<=1; } d_in=0; for(i=0;i<8;i++) { clock=1; clock=0; } _cs=1; delay(5); _cs=0; for(i=0;i<4;i++) { clock=1; ah<<=1; if(d_out)ah|=0x01; clock=0; } for(i=0;i<8;i++) { clock=1; al<<=1; if(d_out) al|=0x01; clock=0; } _cs=1; ad=(uint)ah; ad<<=8; ad|=al; return(ad); } void main() { uchar j; sum=0;sum1=0; sum_final=0; sum_final1=0; while(1) { for(j=0;j<128;j++) { sum1+=read(1); display(a1,b1,c1,d1); } sum=sum1/128; sum1=0; sum_final1=(sum/4095)*5; sum_final=sum_final1*1000; a1=(int)sum_final/1000; b1=(int)sum_final%1000/100; c1=(int)sum_final%1000%100/10; d1=(int)sum_final%10; display(a1,b1,c1,d1); } }
上傳時間: 2013-11-19
上傳用戶:shen1230
對應程序: #include<reg52.h> #define uint unsigned int #define uchar unsigned char uchar code tab[]={ 0x81, 0x42, 0x24, 0x18, }; void delay(uint z) { uint i,j; for(i=z;i>0;i--) for(j=120;j>0;j--); } void init() { P0=0x00; }
上傳時間: 2014-01-17
上傳用戶:ruan2570406
Hopfield 網——擅長于聯想記憶與解迷路 實現H網聯想記憶的關鍵,是使被記憶的模式樣本對應網絡能量函數的極小值。 設有M個N維記憶模式,通過對網絡N個神經元之間連接權 wij 和N個輸出閾值θj的設計,使得: 這M個記憶模式所對應的網絡狀態正好是網絡能量函數的M個極小值。 比較困難,目前還沒有一個適應任意形式的記憶模式的有效、通用的設計方法。 H網的算法 1)學習模式——決定權重 想要記憶的模式,用-1和1的2值表示 模式:-1,-1,1,-1,1,1,... 一般表示: 則任意兩個神經元j、i間的權重: wij=∑ap(i)ap(j),p=1…p; P:模式的總數 ap(s):第p個模式的第s個要素(-1或1) wij:第j個神經元與第i個神經元間的權重 i = j時,wij=0,即各神經元的輸出不直接返回自身。 2)想起模式: 神經元輸出值的初始化 想起時,一般是未知的輸入。設xi(0)為未知模式的第i個要素(-1或1) 將xi(0)作為相對應的神經元的初始值,其中,0意味t=0。 反復部分:對各神經元,計算: xi (t+1) = f (∑wijxj(t)-θi), j=1…n, j≠i n—神經元總數 f()--Sgn() θi—神經元i發火閾值 反復進行,直到各個神經元的輸出不再變化。
上傳時間: 2015-03-16
上傳用戶:JasonC
詞法分析程序,可對以下的C源程序進行分析:main() {int a[12] ,sum for(i=1 i<=12 i++) {for(j=1 j<=12 j++)scanf("%d",&a[i][j]) } for(i=12 i>=1 i--){ for(j=12 j>=1 j--){ if(i==j&&i+j==13)sum+=a[i][j] } } printf("%c",sum) }
上傳時間: 2013-12-26
上傳用戶:skhlm
算法介紹 矩陣求逆在程序中很常見,主要應用于求Billboard矩陣。按照定義的計算方法乘法運算,嚴重影響了性能。在需要大量Billboard矩陣運算時,矩陣求逆的優化能極大提高性能。這里要介紹的矩陣求逆算法稱為全選主元高斯-約旦法。 高斯-約旦法(全選主元)求逆的步驟如下: 首先,對于 k 從 0 到 n - 1 作如下幾步: 從第 k 行、第 k 列開始的右下角子陣中選取絕對值最大的元素,并記住次元素所在的行號和列號,在通過行交換和列交換將它交換到主元素位置上。這一步稱為全選主元。 m(k, k) = 1 / m(k, k) m(k, j) = m(k, j) * m(k, k),j = 0, 1, ..., n-1;j != k m(i, j) = m(i, j) - m(i, k) * m(k, j),i, j = 0, 1, ..., n-1;i, j != k m(i, k) = -m(i, k) * m(k, k),i = 0, 1, ..., n-1;i != k 最后,根據在全選主元過程中所記錄的行、列交換的信息進行恢復,恢復的原則如下:在全選主元過程中,先交換的行(列)后進行恢復;原來的行(列)交換用列(行)交換來恢復。
上傳時間: 2015-04-09
上傳用戶:wang5829
一個簡單的類似鋼琴的游戲,能夠發出3個8度音, 低音:1~7; 中音:Q~U或q~u; 高音:A~J或a~j;
標簽: 鋼琴
上傳時間: 2015-06-09
上傳用戶:784533221
KL變換的實現,對連續六幅TM影像進行處理,算出前三個主要分量的圖像
標簽: 變換
上傳時間: 2014-12-08
上傳用戶:hwl453472107
out< "please input the number of the nodes"<<endl cin>>nodesNum cout<<"please input the graph"<<endl for( i = 1 i<=nodesNum i++) for( j = 1 j <= nodesNum j++) cin>>graph[i][j] */
上傳時間: 2013-11-29
上傳用戶:libinxny
求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標簽: gt myfunction function numel
上傳時間: 2014-01-15
上傳用戶:hongmo
求標準偏差 > function c=myfunction(x) > [m,n]=size(x) > t=0 > for i=1:numel(x) > t=t+x(i)*x(i) > end > c=sqrt(t/(m*n-1)) function c=myfunction(x) [m,n]=size(x) t=0 for i=1:m for j=1:n t=t+x(i,j)*x(i,j) end end c=sqrt(t/(m*n-1
標簽: gt myfunction function numel
上傳時間: 2013-12-26
上傳用戶:dreamboy36