亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

護眼儀

  • INAV-configurator-1.9.3.zip 新版本無人機 刷機用

    新版本無人機.刷機用借助此實際應用程序,管理無人機的所有區域,例如電動機,GPS,傳感器,陀螺儀,接收器,端口和固件INAV-Chrome 的配置器中的新功能:修復了導致加速度計校準失敗的錯誤支持DJI FPV系統配置輸出選項卡中的怠速節氣門和馬達極現在可以在“混合器”選項卡中選擇“漫遊者”和“船用”平臺。 固件方面的支持仍然有限!閱讀完整的變更日誌 在過去的幾年中,無人駕駛飛機取得了相當大的進步,越來越多的人能夠獲取和使用無人機。 不用說,無人機可以基於特定固件在一組命令上運行。 在這方面, 用於Chrome的INAV-Configurator隨附的工具可幫助您輕鬆配置無人機的各個方面。支持多種硬件配置首先要提到的一件事是,要求Google Chrome瀏覽器能夠訪問INAV-Chrome的配置器功能。 儘管它已集成到Chrome中,但它可以作為獨立應用程序運行,甚至可以脫機使用,而與瀏覽器無關。 您甚至可以從Google Apps菜單為其創建桌面快捷方式。不用說,另一個要求是實際的飛行裝置。 該應用程序支持所有支持INAV的硬件配置,例如Sirius AIR3,SPRacingF3,Vortex,Sparky,DoDo,CC3D / EVO,Flip32 / + / Deluxe,DragonFly32,CJMCU Microquad,Chebuzz F3,STM32F3Discovery,Hermit ,Naze32 Tricopter框架和Skyline32。該窗口非常直觀,並提供各種令人印象深刻的提示和文檔。 在上方的工具欄上,您可以找到連接選項,這些選項可以通過COM端口,手動選擇或無線模式進行。 您也可以選擇自動連接。 連接後,您可以在上方的工具欄中查看設備的功能,並在側面板中輕鬆瀏覽配置選項。管理傳感器,電機,端口和固件本。

    標簽: configurator 無人機

    上傳時間: 2022-06-09

    上傳用戶:

  • 超聲波電機之設計及分析

    1-1前言一般人所能夠感受到聲音的頻率約介於5H2-20KHz,超音波(Ultrasonic wave)即爲頻率超過20KHz以上的音波或機械振動,因此超音波馬達就是利用超音波的彈性振動頻率所構成的制動力。超音波馬達的內部主要是以壓電陶瓷材料作爲激發源,其成份是由鉛(Pb)、結(Zr)及鈦(Ti)的氧化物皓鈦酸鉛(Lead zirconate titanate,PZT)製成的。將歷電材料上下方各黏接彈性體,如銅或不銹鋼,並施以交流電壓於壓電陶瓷材料作爲驅動源,以激振彈性體,稱此結構爲定子(Stator),將其用彈簧與轉子Rotor)接觸,將所産生摩擦力來驅使轉子轉動,由於壓電材料的驅動能量很大,並足以抗衡轉子與定子間的正向力,雖然伸縮振幅大小僅有數徵米(um)的程度,但因每秒之伸縮達數十萬次,所以相較於同型的電磁式馬達的驅動能量要大的許多。超音波馬達的優點爲:1,轉子慣性小、響應時間短、速度範圍大。2,低轉速可產生高轉矩及高轉換效率。3,不受磁場作用的影響。4,構造簡單,體積大小可控制。5,不須經過齒輸作減速機構,故較爲安靜。實際應用上,超音波馬達具有不同於傳統電磁式馬達的特性,因此在不適合應用傳統馬達的場合,例如:間歇性運動的裝置、空間或形狀受到限制的場所;另外包括一些高磁場的場合,如核磁共振裝置、斷層掃描儀器等。所以未來在自動化設備、視聽音響、照相機及光學儀器等皆可應用超音波馬達來取代。

    標簽: 超聲波電機

    上傳時間: 2022-06-17

    上傳用戶:

  • 基于觸摸屏的的人機交互行為與機制研究

    本文以觸摸屏的人機交互設計為與機制為課題背景,對不同觸摸設備的交互特征和用戶使用行為進行分析,包括手機(小尺寸觸摸設備)及平板(大尺寸觸摸設備),從而總結出觸摸設備的交互設計原則。通過實例總結手機為例的小尺寸屏幕的6種典型界面結構,平板為例的大尺寸觸屏設備的6種典型界面結構。大部分的應用界面都是以此為基礎展開設計。詳細介紹了各個框架的優勢和劣勢,以及對應的使用場景,適合的應用類型。填補了觸摸屏界面結構庫眼動研究的空白。并通過眼動實驗分析用戶進行觸屏操作時的眼動規律,經過數據分析進一步探索界面結構的應用場景和交互操作特性,得出一套完整的界面結構選擇規律。最后應用前文的研究結論,通過實例設計一款未來的家庭廚房生活的概念產品。選擇與其匹配的界面結構,進行交互界面及流程設計。本文的研究結論對改善觸屏設備的交互設計是非常有意義的,符合科技發展趨勢且具有一定的應用價值。隨著信息社會的發展,觸摸屏設備逐步進入人們的視線。越來越多的觸屏設備將投入市場并被用戶所使用,觸摸設備也將更多的影響和改變人們的生活方式。觸摸屏作為一種最新的電腦輸入設備,是目前最簡單、自然的一種人機交互方式。它賦予了多媒體以嶄新的面貌。觸摸屏的人機交互和個人電腦的交互方式有著天壤之別,個人電腦的輸入設備主要是由鍵盤和鼠標操作完成,點擊式交互是個人電腦上的主要交互方式;而觸摸屏則是以手指的手勢操作為主。手勢操作更直接、有效,但是由于手指觸擊屏幕的面積較大,相比鼠標更容易造成誤操作。同時,不同材質的觸摸屏靈敏度也決定了手勢交互是否友好。研究表明,用戶用食指和拇指進行操作也是有區別的,拇指的觸及范圍相對食指會更大,觸擊準確率更低11。因此對觸摸屏進行針對性的設計研究,而不是直接將桌面設備的界面設計規則照搬過來是有一定實踐意義的。本文的研究以觸屏界面結構為落腳點,設計的最終目的是提出一套觸屏界面結構的選擇規范,為觸屏人機界面資源庫添加結構庫的部分。讓產品有著更加良好的用戶體驗,有效方便的解決開發人員在設計一款新的應用時不知選取怎樣的界面結構問題,減少開發人員的重復工作量和不必要的創新和濫用,規范用戶界面結構使產品在不同的觸摸設備上保持一致的交互體驗。這對于產品的最終用戶,體驗將起到很重要的作用。

    標簽: 觸摸屏 人機交互

    上傳時間: 2022-06-18

    上傳用戶:zhanglei193

  • 面向5G移動網絡綠色通信關鍵技術研究

    本文跟蹤了國內國際上各研究組織關于5G需求與關鍵技術最新研究進展。高能效將是5G從設計之初就不得不考慮的幾個重要問題之。研究如何在不損失或者微損失網絡性能的前提下,極大地降低系統的能量消耗是一項很有研究價值的工作。本文通過分析現有無線網絡基站能量消耗的各個組成部分,參考目前5G研究趨勢,選擇網絡能效模型與基站能耗模型,用于后續網絡能效評估。小站密集化部署技術(Small Cell)是目前業內普遍認同的實現未來5G系統各項性能指標與效率指標的有效策略之一。隨著小站的密集化部署,網絡整體能效成為衡量異構無線通信系統長期經濟效益的一項重要指標。網絡運營前,需要以高能效為目標進行Small Cell密集化網絡部署。本文利用上述的能效模型,建立并推導出了Small Cell最佳部客位置與數量的高能效網絡部署方案目標函數,進一步通過數值仿真方法獲得了具體網絡場景下的高能效Small Cell 絡部署位置與數量,最后通過對大量的仿真結果進行分析,得出了高能效Small Cell集化署方案的一般性規律。研究成果對未來5G系統中SmallCell的部署具有重要參考意義在網絡運營中,由于網絡負載存在天然的不均衡性與動態被動性,需要在Small Cell密集化部署的未來移動通信系統中進行高能效網絡拓撲控制,以便在網絡運營中維持實時的網絡能效最優化的網絡拓撲結構。本論文分析了目前業界關于Small Cell 休眠/喚醒性能增益的最新研究成果,并針對其現有休眠喚醒方案中以單小區固定負載為門限的休眠順醒機制的不足,提出了一種高能效Small Cell聯合休眼喚醒控制機制,實現了對網絡拓撲的高能效動態控制。Small Cell密集化部署使網絡編碼在未來無線網絡環境中得到了新的應用契機,本文最后結合幾種未來5G新場景對網絡編碼應用方案進行了初步探討。初步仿真結果表明,網絡編碼方案可有效提升能效。

    標簽: 5g 移動網絡

    上傳時間: 2022-06-20

    上傳用戶:canderile

  • 碩士論文:基于FPGA的PCIE數據采集卡設計

    廣東工業大學碩士學位論文 (工學碩士) 基于FPGA的PCIE數據采集卡設計數據采集處理技術與傳感器技術、信號處理技術和PC機技術共同構成檢測 技術的基礎,其中數據采集處理技術作為實現自動化檢測的前提,在整個數字化 系統中處于尤為重要的地位。對于核磁共振這樣復雜的系統設備,實現自動化測 試顯得尤為必要,又因為核磁共振成像系統的特殊性,對數據的采集有特殊要求, 需要根據各種脈沖序列的不同要求設置采樣點數和采樣間隔,根據待采信號的不 同帶寬來設置采樣率,將系統成像的數據采集下來進行處理,最后重建圖像和顯 示。因此本文基于現有的采集技術開發專門應用于核磁共振成像的數據采集卡。 該采集卡從軟件與硬件兩個方面對基于FPGA的PCIE數據采集卡進行了研 究,并完成了實物設計。軟件方面以FPGA為核心芯片完成數據采集卡的接口控 制以及數據處理。通過Altera的GXB IP核對數據進行捕捉,同時根據實際需要 設計了傳輸協議,由數據處理模塊將捕捉到的數據通過CIC濾波器進行抽取濾 波,然后將信號存入DDR2 SDRAM存儲芯片中。在傳輸接口設計上采用PCIE 總線接口的數據傳輸模式,并利用FPGA的IP核資源完成接口的邏輯控制。 硬件部分分為FPGA外圍配置電路、DDR2接口電路、PCIE接口電路等模 塊。該采集卡硬件系統由Flash對FPGA進行初始化,通過FPGA配置PCIE總 線,根據FPGA中PCIE通道引腳的要求進行布局布線。DDR2接口電路模塊依 據DDR2芯片驅動和接收端的電平標準、端接方式確定DDR2與FPGA之間通 信的各信號走線。針對各個模塊接口電路的特點分別進行眼圖測試,分析了板卡 的通信質量,對整個原理圖布局進行了設計優化。 通過測試,該數據采集卡實現了通過CPLD對FPGA進行加載,并在FPGA 內部實現了抽取濾波等高速數字信號處理,各種接IsI和控制邏輯以及通過大容量 的DDR2 SDRAM緩存各種數據處理結果正確。經系統成像,該采集卡采集下來 的數字信息可通過圖像重建準確成像,為核磁共振成像系統的工程實現打下了良 好的成像基礎。 

    標簽: 核磁共振 信號處理 FPGA PCIE DDR2

    上傳時間: 2022-06-21

    上傳用戶:fliang

  • MIPI調試總結 For Lattice FPGA

    文將簡要地介紹基于Lattice FPGA(XO2/XO3/ECP3/ECP5/CrossLink)器件的,MIPI CSI/DSI調試心得。如有不足,請指正。第一步、確認硬件設計、接口連接1.1、可以使用示波器測量相關器件的MIPI輸出信號(可分別在靠近輸出端和靠近接收器件接收端測量,進而分析信號傳輸問題),來確認信號連接是否正常;1.2、如信號質量較差(衰減嚴重、反射現象等等),請先檢查器件焊接是否牢靠,傳輸線上阻抗是否匹配等;1.3、如果信號一切正常,但是仍然無法找到SoT(B8),請確認差分線PN是否接反了;注:Lattice FPGA暫時未支持NP翻轉功能,不能通過軟件設置,實現類似SerDes支持的PN翻轉功能。1.4、針對非CrossLink器件,請檢查電路連接是否正確。具體請參考本文附件,以及Lattice各個器件的相關手冊;1.5、如果是MIPI N進1出的設計(N合一),建議各個輸入器件采用用一個時鐘發生器(晶振),即同源。同時FPGA MIPI Tx所需要的時鐘源,最好也與其同源。如果不同源,建議Tx的時鐘要略高于Rx的時鐘(如Pixel Clock);1.6、如果條件允許,可以通過示波器分析眼圖,以獲得更多的信號完整性信息。

    標簽: mipi調試 FPGA

    上傳時間: 2022-07-19

    上傳用戶:

主站蜘蛛池模板: 彭山县| 含山县| 安乡县| 甘洛县| 长汀县| 渝中区| 玉屏| 阜平县| 大田县| 台山市| 通化市| 博乐市| 视频| 伽师县| 平塘县| 玉田县| 郯城县| 定州市| 芒康县| 阿克陶县| 怀远县| 长治市| 贵阳市| 靖西县| 怀来县| 河西区| 洪泽县| 漠河县| 马鞍山市| 永春县| 依安县| 和田县| 肇东市| 寻乌县| 鹤岗市| 阆中市| 卢湾区| 泰和县| 龙南县| 绥德县| 宕昌县|