亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

貝葉斯算法

  • 兩個模式識別算法實(shí)現(xiàn)

    兩個模式識別算法實(shí)現(xiàn),一個是線性區(qū)別函數(shù)另一個是混合高斯模型方法。本人的大作業(yè),經(jīng)驗(yàn)證可用。

    標(biāo)簽: 模式識別 算法

    上傳時間: 2017-09-19

    上傳用戶:

  • C語言算法速查手冊 書本附件

    第1章 緒論 1 1.1 程序設(shè)計(jì)語言概述 1 1.1.1 機(jī)器語言 1 1.1.2 匯編語言 2 1.1.3 高級語言 2 1.1.4 C語言 3 1.2 C語言的優(yōu)點(diǎn)和缺點(diǎn) 4 1.2.1 C語言的優(yōu)點(diǎn) 4 1.2.2 C語言的缺點(diǎn) 6 1.3 算法概述 7 1.3.1 算法的基本特征 7 1.3.2 算法的復(fù)雜度 8 1.3.3 算法的準(zhǔn)確性 10 1.3.4 算法的穩(wěn)定性 14 第2章 復(fù)數(shù)運(yùn)算 18 2.1 復(fù)數(shù)的四則運(yùn)算 18 2.1.1 [算法1] 復(fù)數(shù)乘法 18 2.1.2 [算法2] 復(fù)數(shù)除法 20 2.1.3 【實(shí)例5】 復(fù)數(shù)的四則運(yùn)算 22 2.2 復(fù)數(shù)的常用函數(shù)運(yùn)算 23 2.2.1 [算法3] 復(fù)數(shù)的乘冪 23 2.2.2 [算法4] 復(fù)數(shù)的n次方根 25 2.2.3 [算法5] 復(fù)數(shù)指數(shù) 27 2.2.4 [算法6] 復(fù)數(shù)對數(shù) 29 2.2.5 [算法7] 復(fù)數(shù)正弦 30 2.2.6 [算法8] 復(fù)數(shù)余弦 32 2.2.7 【實(shí)例6】 復(fù)數(shù)的函數(shù)運(yùn)算 34 第3章 多項(xiàng)式計(jì)算 37 3.1 多項(xiàng)式的表示方法 37 3.1.1 系數(shù)表示法 37 3.1.2 點(diǎn)表示法 38 3.1.3 [算法9] 系數(shù)表示轉(zhuǎn)化為點(diǎn)表示 38 3.1.4 [算法10] 點(diǎn)表示轉(zhuǎn)化為系數(shù)表示 42 3.1.5 【實(shí)例7】 系數(shù)表示法與點(diǎn)表示法的轉(zhuǎn)化 46 3.2 多項(xiàng)式運(yùn)算 47 3.2.1 [算法11] 復(fù)系數(shù)多項(xiàng)式相乘 47 3.2.2 [算法12] 實(shí)系數(shù)多項(xiàng)式相乘 50 3.2.3 [算法13] 復(fù)系數(shù)多項(xiàng)式相除 52 3.2.4 [算法14] 實(shí)系數(shù)多項(xiàng)式相除 54 3.2.5 【實(shí)例8】 復(fù)系數(shù)多項(xiàng)式的乘除法 56 3.2.6 【實(shí)例9】 實(shí)系數(shù)多項(xiàng)式的乘除法 57 3.3 多項(xiàng)式的求值 59 3.3.1 [算法15] 一元多項(xiàng)式求值 59 3.3.2 [算法16] 一元多項(xiàng)式多組求值 60 3.3.3 [算法17] 二元多項(xiàng)式求值 63 3.3.4 【實(shí)例10】 一元多項(xiàng)式求值 65 3.3.5 【實(shí)例11】 二元多項(xiàng)式求值 66 第4章 矩陣計(jì)算 68 4.1 矩陣相乘 68 4.1.1 [算法18] 實(shí)矩陣相乘 68 4.1.2 [算法19] 復(fù)矩陣相乘 70 4.1.3 【實(shí)例12】 實(shí)矩陣與復(fù)矩陣的乘法 72 4.2 矩陣的秩與行列式值 73 4.2.1 [算法20] 求矩陣的秩 73 4.2.2 [算法21] 求一般矩陣的行列式值 76 4.2.3 [算法22] 求對稱正定矩陣的行列式值 80 4.2.4 【實(shí)例13】 求矩陣的秩和行列式值 82 4.3 矩陣求逆 84 4.3.1 [算法23] 求一般復(fù)矩陣的逆 84 4.3.2 [算法24] 求對稱正定矩陣的逆 90 4.3.3 [算法25] 求托伯利茲矩陣逆的Trench方法 92 4.3.4 【實(shí)例14】 驗(yàn)證矩陣求逆算法 97 4.3.5 【實(shí)例15】 驗(yàn)證T矩陣求逆算法 99 4.4 矩陣分解與相似變換 102 4.4.1 [算法26] 實(shí)對稱矩陣的LDL分解 102 4.4.2 [算法27] 對稱正定實(shí)矩陣的Cholesky分解 104 4.4.3 [算法28] 一般實(shí)矩陣的全選主元LU分解 107 4.4.4 [算法29] 一般實(shí)矩陣的QR分解 112 4.4.5 [算法30] 對稱實(shí)矩陣相似變換為對稱三對角陣 116 4.4.6 [算法31] 一般實(shí)矩陣相似變換為上Hessen-Burg矩陣 121 4.4.7 【實(shí)例16】 對一般實(shí)矩陣進(jìn)行QR分解 126 4.4.8 【實(shí)例17】 對稱矩陣的相似變換 127 4.4.9 【實(shí)例18】 一般實(shí)矩陣相似變換 129 4.5 矩陣特征值的計(jì)算 130 4.5.1 [算法32] 求上Hessen-Burg矩陣全部特征值的QR方法 130 4.5.2 [算法33] 求對稱三對角陣的全部特征值 137 4.5.3 [算法34] 求對稱矩陣特征值的雅可比法 143 4.5.4 [算法35] 求對稱矩陣特征值的雅可比過關(guān)法 147 4.5.5 【實(shí)例19】 求上Hessen-Burg矩陣特征值 151 4.5.6 【實(shí)例20】 分別用兩種雅克比法求對稱矩陣特征值 152 第5章 線性代數(shù)方程組的求解 154 5.1 高斯消去法 154 5.1.1 [算法36] 求解復(fù)系數(shù)方程組的全選主元高斯消去法 155 5.1.2 [算法37] 求解實(shí)系數(shù)方程組的全選主元高斯消去法 160 5.1.3 [算法38] 求解復(fù)系數(shù)方程組的全選主元高斯-約當(dāng)消去法 163 5.1.4 [算法39] 求解實(shí)系數(shù)方程組的全選主元高斯-約當(dāng)消去法 168 5.1.5 [算法40] 求解大型稀疏系數(shù)矩陣方程組的高斯-約當(dāng)消去法 171 5.1.6 [算法41] 求解三對角線方程組的追趕法 174 5.1.7 [算法42] 求解帶型方程組的方法 176 5.1.8 【實(shí)例21】 解線性實(shí)系數(shù)方程組 179 5.1.9 【實(shí)例22】 解線性復(fù)系數(shù)方程組 180 5.1.10 【實(shí)例23】 解三對角線方程組 182 5.2 矩陣分解法 184 5.2.1 [算法43] 求解對稱方程組的LDL分解法 184 5.2.2 [算法44] 求解對稱正定方程組的Cholesky分解法 186 5.2.3 [算法45] 求解線性最小二乘問題的QR分解法 188 5.2.4 【實(shí)例24】 求解對稱正定方程組 191 5.2.5 【實(shí)例25】 求解線性最小二乘問題 192 5.3 迭代方法 193 5.3.1 [算法46] 病態(tài)方程組的求解 193 5.3.2 [算法47] 雅克比迭代法 197 5.3.3 [算法48] 高斯-塞德爾迭代法 200 5.3.4 [算法49] 超松弛方法 203 5.3.5 [算法50] 求解對稱正定方程組的共軛梯度方法 205 5.3.6 [算法51] 求解托伯利茲方程組的列文遜方法 209 5.3.7 【實(shí)例26】 解病態(tài)方程組 214 5.3.8 【實(shí)例27】 用迭代法解方程組 215 5.3.9 【實(shí)例28】 求解托伯利茲方程組 217 第6章 非線性方程與方程組的求解 219 6.1 非線性方程求根的基本過程 219 6.1.1 確定非線性方程實(shí)根的初始近似值或根的所在區(qū)間 219 6.1.2 求非線性方程根的精確解 221 6.2 求非線性方程一個實(shí)根的方法 221 6.2.1 [算法52] 對分法 221 6.2.2 [算法53] 牛頓法 223 6.2.3 [算法54] 插值法 226 6.2.4 [算法55] 埃特金迭代法 229 6.2.5 【實(shí)例29】 用對分法求非線性方程組的實(shí)根 232 6.2.6 【實(shí)例30】 用牛頓法求非線性方程組的實(shí)根 233 6.2.7 【實(shí)例31】 用插值法求非線性方程組的實(shí)根 235 6.2.8 【實(shí)例32】 用埃特金迭代法求非線性方程組的實(shí)根 237 6.3 求實(shí)系數(shù)多項(xiàng)式方程全部根的方法 238 6.3.1 [算法56] QR方法 238 6.3.2 【實(shí)例33】 用QR方法求解多項(xiàng)式的全部根 240 6.4 求非線性方程組一組實(shí)根的方法 241 6.4.1 [算法57] 梯度法 241 6.4.2 [算法58] 擬牛頓法 244 6.4.3 【實(shí)例34】 用梯度法計(jì)算非線性方程組的一組實(shí)根 250 6.4.4 【實(shí)例35】 用擬牛頓法計(jì)算非線性方程組的一組實(shí)根 252 第7章 代數(shù)插值法 254 7.1 拉格朗日插值法 254 7.1.1 [算法59] 線性插值 255 7.1.2 [算法60] 二次拋物線插值 256 7.1.3 [算法61] 全區(qū)間插值 259 7.1.4 【實(shí)例36】 拉格朗日插值 262 7.2 埃爾米特插值 263 7.2.1 [算法62] 埃爾米特不等距插值 263 7.2.2 [算法63] 埃爾米特等距插值 267 7.2.3 【實(shí)例37】 埃爾米特插值法 270 7.3 埃特金逐步插值 271 7.3.1 [算法64] 埃特金不等距插值 272 7.3.2 [算法65] 埃特金等距插值 275 7.3.3 【實(shí)例38】 埃特金插值 278 7.4 光滑插值 279 7.4.1 [算法66] 光滑不等距插值 279 7.4.2 [算法67] 光滑等距插值 283 7.4.3 【實(shí)例39】 光滑插值 286 7.5 三次樣條插值 287 7.5.1 [算法68] 第一類邊界條件的三次樣條函數(shù)插值 287 7.5.2 [算法69] 第二類邊界條件的三次樣條函數(shù)插值 292 7.5.3 [算法70] 第三類邊界條件的三次樣條函數(shù)插值 296 7.5.4 【實(shí)例40】 樣條插值法 301 7.6 連分式插值 303 7.6.1 [算法71] 連分式插值 304 7.6.2 【實(shí)例41】 驗(yàn)證連分式插值的函數(shù) 308 第8章 數(shù)值積分法 309 8.1 變步長求積法 310 8.1.1 [算法72] 變步長梯形求積法 310 8.1.2 [算法73] 自適應(yīng)梯形求積法 313 8.1.3 [算法74] 變步長辛卜生求積法 316 8.1.4 [算法75] 變步長辛卜生二重積分方法 318 8.1.5 [算法76] 龍貝格積分 322 8.1.6 【實(shí)例42】 變步長積分法進(jìn)行一重積分 325 8.1.7 【實(shí)例43】 變步長辛卜生積分法進(jìn)行二重積分 326 8.2 高斯求積法 328 8.2.1 [算法77] 勒讓德-高斯求積法 328 8.2.2 [算法78] 切比雪夫求積法 331 8.2.3 [算法79] 拉蓋爾-高斯求積法 334 8.2.4 [算法80] 埃爾米特-高斯求積法 336 8.2.5 [算法81] 自適應(yīng)高斯求積方法 337 8.2.6 【實(shí)例44】 有限區(qū)間高斯求積法 342 8.2.7 【實(shí)例45】 半無限區(qū)間內(nèi)高斯求積法 343 8.2.8 【實(shí)例46】 無限區(qū)間內(nèi)高斯求積法 345 8.3 連分式法 346 8.3.1 [算法82] 計(jì)算一重積分的連分式方法 346 8.3.2 [算法83] 計(jì)算二重積分的連分式方法 350 8.3.3 【實(shí)例47】 連分式法進(jìn)行一重積分 354 8.3.4 【實(shí)例48】 連分式法進(jìn)行二重積分 355 8.4 蒙特卡洛法 356 8.4.1 [算法84] 蒙特卡洛法進(jìn)行一重積分 356 8.4.2 [算法85] 蒙特卡洛法進(jìn)行二重積分 358 8.4.3 【實(shí)例49】 一重積分的蒙特卡洛法 360 8.4.4 【實(shí)例50】 二重積分的蒙特卡洛法 361 第9章 常微分方程(組)初值問題的求解 363 9.1 歐拉方法 364 9.1.1 [算法86] 定步長歐拉方法 364 9.1.2 [算法87] 變步長歐拉方法 366 9.1.3 [算法88] 改進(jìn)的歐拉方法 370 9.1.4 【實(shí)例51】 歐拉方法求常微分方程數(shù)值解 372 9.2 龍格-庫塔方法 376 9.2.1 [算法89] 定步長龍格-庫塔方法 376 9.2.2 [算法90] 變步長龍格-庫塔方法 379 9.2.3 [算法91] 變步長基爾方法 383 9.2.4 【實(shí)例52】 龍格-庫塔方法求常微分方程的初值問題 386 9.3 線性多步法 390 9.3.1 [算法92] 阿當(dāng)姆斯預(yù)報(bào)校正法 390 9.3.2 [算法93] 哈明方法 394 9.3.3 [算法94] 全區(qū)間積分的雙邊法 399 9.3.4 【實(shí)例53】 線性多步法求常微分方程組初值問題 401 第10章 擬合與逼近 405 10.1 一元多項(xiàng)式擬合 405 10.1.1 [算法95] 最小二乘擬合 405 10.1.2 [算法96] 最佳一致逼近的里米茲方法 412 10.1.3 【實(shí)例54】 一元多項(xiàng)式擬合 417 10.2 矩形區(qū)域曲面擬合 419 10.2.1 [算法97] 矩形區(qū)域最小二乘曲面擬合 419 10.2.2 【實(shí)例55】 二元多項(xiàng)式擬合 428 第11章 特殊函數(shù) 430 11.1 連分式級數(shù)和指數(shù)積分 430 11.1.1 [算法98] 連分式級數(shù)求值 430 11.1.2 [算法99] 指數(shù)積分 433 11.1.3 【實(shí)例56】 連分式級數(shù)求值 436 11.1.4 【實(shí)例57】 指數(shù)積分求值 438 11.2 伽馬函數(shù) 439 11.2.1 [算法100] 伽馬函數(shù) 439 11.2.2 [算法101] 貝塔函數(shù) 441 11.2.3 [算法102] 階乘 442 11.2.4 【實(shí)例58】 伽馬函數(shù)和貝塔函數(shù)求值 443 11.2.5 【實(shí)例59】 階乘求值 444 11.3 不完全伽馬函數(shù) 445 11.3.1 [算法103] 不完全伽馬函數(shù) 445 11.3.2 [算法104] 誤差函數(shù) 448 11.3.3 [算法105] 卡方分布函數(shù) 450 11.3.4 【實(shí)例60】 不完全伽馬函數(shù)求值 451 11.3.5 【實(shí)例61】 誤差函數(shù)求值 452 11.3.6 【實(shí)例62】 卡方分布函數(shù)求值 453 11.4 不完全貝塔函數(shù) 454 11.4.1 [算法106] 不完全貝塔函數(shù) 454 11.4.2 [算法107] 學(xué)生分布函數(shù) 457 11.4.3 [算法108] 累積二項(xiàng)式分布函數(shù) 458 11.4.4 【實(shí)例63】 不完全貝塔函數(shù)求值 459 11.5 貝塞爾函數(shù) 461 11.5.1 [算法109] 第一類整數(shù)階貝塞爾函數(shù) 461 11.5.2 [算法110] 第二類整數(shù)階貝塞爾函數(shù) 466 11.5.3 [算法111] 變型第一類整數(shù)階貝塞爾函數(shù) 469 11.5.4 [算法112] 變型第二類整數(shù)階貝塞爾函數(shù) 473 11.5.5 【實(shí)例64】 貝塞爾函數(shù)求值 476 11.5.6 【實(shí)例65】 變型貝塞爾函數(shù)求值 477 11.6 Carlson橢圓積分 479 11.6.1 [算法113] 第一類橢圓積分 479 11.6.2 [算法114] 第一類橢圓積分的退化形式 481 11.6.3 [算法115] 第二類橢圓積分 483 11.6.4 [算法116] 第三類橢圓積分 486 11.6.5 【實(shí)例66】 第一類勒讓德橢圓函數(shù)積分求值 490 11.6.6 【實(shí)例67】 第二類勒讓德橢圓函數(shù)積分求值 492 第12章 極值問題 494 12.1 一維極值求解方法 494 12.1.1 [算法117] 確定極小值點(diǎn)所在的區(qū)間 494 12.1.2 [算法118] 一維黃金分割搜索 499 12.1.3 [算法119] 一維Brent方法 502 12.1.4 [算法120] 使用一階導(dǎo)數(shù)的Brent方法 506 12.1.5 【實(shí)例68】 使用黃金分割搜索法求極值 511 12.1.6 【實(shí)例69】 使用Brent法求極值 513 12.1.7 【實(shí)例70】 使用帶導(dǎo)數(shù)的Brent法求極值 515 12.2 多元函數(shù)求極值 517 12.2.1 [算法121] 不需要導(dǎo)數(shù)的一維搜索 517 12.2.2 [算法122] 需要導(dǎo)數(shù)的一維搜索 519 12.2.3 [算法123] Powell方法 522 12.2.4 [算法124] 共軛梯度法 525 12.2.5 [算法125] 準(zhǔn)牛頓法 531 12.2.6 【實(shí)例71】 驗(yàn)證不使用導(dǎo)數(shù)的一維搜索 536 12.2.7 【實(shí)例72】 用Powell算法求極值 537 12.2.8 【實(shí)例73】 用共軛梯度法求極值 539 12.2.9 【實(shí)例74】 用準(zhǔn)牛頓法求極值 540 12.3 單純形法 542 12.3.1 [算法126] 求無約束條件下n維極值的單純形法 542 12.3.2 [算法127] 求有約束條件下n維極值的單純形法 548 12.3.3 [算法128] 解線性規(guī)劃問題的單純形法 556 12.3.4 【實(shí)例75】 用單純形法求無約束條件下N維的極值 568 12.3.5 【實(shí)例76】 用單純形法求有約束條件下N維的極值 569 12.3.6 【實(shí)例77】 求解線性規(guī)劃問題 571 第13章 隨機(jī)數(shù)產(chǎn)生與統(tǒng)計(jì)描述 574 13.1 均勻分布隨機(jī)序列 574 13.1.1 [算法129] 產(chǎn)生0到1之間均勻分布的一個隨機(jī)數(shù) 574 13.1.2 [算法130] 產(chǎn)生0到1之間均勻分布的隨機(jī)數(shù)序列 576 13.1.3 [算法131] 產(chǎn)生任意區(qū)間內(nèi)均勻分布的一個隨機(jī)整數(shù) 577 13.1.4 [算法132] 產(chǎn)生任意區(qū)間內(nèi)均勻分布的隨機(jī)整數(shù)序列 578 13.1.5 【實(shí)例78】 產(chǎn)生0到1之間均勻分布的隨機(jī)數(shù)序列 580 13.1.6 【實(shí)例79】 產(chǎn)生任意區(qū)間內(nèi)均勻分布的隨機(jī)整數(shù)序列 581 13.2 正態(tài)分布隨機(jī)序列 582 13.2.1 [算法133] 產(chǎn)生任意均值與方差的正態(tài)分布的一個隨機(jī)數(shù) 582 13.2.2 [算法134] 產(chǎn)生任意均值與方差的正態(tài)分布的隨機(jī)數(shù)序列 585 13.2.3 【實(shí)例80】 產(chǎn)生任意均值與方差的正態(tài)分布的一個隨機(jī)數(shù) 587 13.2.4 【實(shí)例81】 產(chǎn)生任意均值與方差的正態(tài)分布的隨機(jī)數(shù)序列 588 13.3 統(tǒng)計(jì)描述 589 13.3.1 [算法135] 分布的矩 589 13.3.2 [算法136] 方差相同時的t分布檢驗(yàn) 591 13.3.3 [算法137] 方差不同時的t分布檢驗(yàn) 594 13.3.4 [算法138] 方差的F檢驗(yàn) 596 13.3.5 [算法139] 卡方檢驗(yàn) 599 13.3.6 【實(shí)例82】 計(jì)算隨機(jī)樣本的矩 601 13.3.7 【實(shí)例83】 t分布檢驗(yàn) 602 13.3.8 【實(shí)例84】 F分布檢驗(yàn) 605 13.3.9 【實(shí)例85】 檢驗(yàn)卡方檢驗(yàn)的算法 607 第14章 查找 609 14.1 基本查找 609 14.1.1 [算法140] 有序數(shù)組的二分查找 609 14.1.2 [算法141] 無序數(shù)組同時查找最大和最小的元素 611 14.1.3 [算法142] 無序數(shù)組查找第M小的元素 613 14.1.4 【實(shí)例86】 基本查找 615 14.2 結(jié)構(gòu)體和磁盤文件的查找 617 14.2.1 [算法143] 無序結(jié)構(gòu)體數(shù)組的順序查找 617 14.2.2 [算法144] 磁盤文件中記錄的順序查找 618 14.2.3 【實(shí)例87】 結(jié)構(gòu)體數(shù)組和文件中的查找 619 14.3 哈希查找 622 14.3.1 [算法145] 字符串哈希函數(shù) 622 14.3.2 [算法146] 哈希函數(shù) 626 14.3.3 [算法147] 向哈希表中插入元素 628 14.3.4 [算法148] 在哈希表中查找元素 629 14.3.5 [算法149] 在哈希表中刪除元素 631 14.3.6 【實(shí)例88】 構(gòu)造哈希表并進(jìn)行查找 632 第15章 排序 636 15.1 插入排序 636 15.1.1 [算法150] 直接插入排序 636 15.1.2 [算法151] 希爾排序 637 15.1.3 【實(shí)例89】 插入排序 639 15.2 交換排序 641 15.2.1 [算法152] 氣泡排序 641 15.2.2 [算法153] 快速排序 642 15.2.3 【實(shí)例90】 交換排序 644 15.3 選擇排序 646 15.3.1 [算法154] 直接選擇排序 646 15.3.2 [算法155] 堆排序 647 15.3.3 【實(shí)例91】 選擇排序 650 15.4 線性時間排序 651 15.4.1 [算法156] 計(jì)數(shù)排序 651 15.4.2 [算法157] 基數(shù)排序 653 15.4.3 【實(shí)例92】 線性時間排序 656 15.5 歸并排序 657 15.5.1 [算法158] 二路歸并排序 658 15.5.2 【實(shí)例93】 二路歸并排序 660 第16章 數(shù)學(xué)變換與濾波 662 16.1 快速傅里葉變換 662 16.1.1 [算法159] 復(fù)數(shù)據(jù)快速傅里葉變換 662 16.1.2 [算法160] 復(fù)數(shù)據(jù)快速傅里葉逆變換 666 16.1.3 [算法161] 實(shí)數(shù)據(jù)快速傅里葉變換 669 16.1.4 【實(shí)例94】 驗(yàn)證傅里葉變換的函數(shù) 671 16.2 其他常用變換 674 16.2.1 [算法162] 快速沃爾什變換 674 16.2.2 [算法163] 快速哈達(dá)瑪變換 678 16.2.3 [算法164] 快速余弦變換 682 16.2.4 【實(shí)例95】 驗(yàn)證沃爾什變換和哈達(dá)瑪?shù)暮瘮?shù) 684 16.2.5 【實(shí)例96】 驗(yàn)證離散余弦變換的函數(shù) 687 16.3 平滑和濾波 688 16.3.1 [算法165] 五點(diǎn)三次平滑 689 16.3.2 [算法166] α-β-γ濾波 690 16.3.3 【實(shí)例97】 驗(yàn)證五點(diǎn)三次平滑 692 16.3.4 【實(shí)例98】 驗(yàn)證α-β-γ濾波算法 693  

    標(biāo)簽: C 算法 附件 源代碼

    上傳時間: 2015-06-29

    上傳用戶:cbsdukaf

  • gauss-siedel算法

    簡單的高斯siedel迭代算法,病態(tài)矩陣就不行了。。。

    標(biāo)簽: gauss-siedel算法

    上傳時間: 2016-06-03

    上傳用戶:xman528

  • 喬列斯基分解

    一種矩陣分解的算法,使用了喬列斯基分解方法進(jìn)行分解

    標(biāo)簽: 分解

    上傳時間: 2017-12-23

    上傳用戶:1553440

  • 最小貝葉斯決策算法

    基于最小風(fēng)險(xiǎn)的貝葉斯決策 matlab代碼實(shí)現(xiàn)

    標(biāo)簽: 貝葉斯 算法

    上傳時間: 2019-01-22

    上傳用戶:chegnbeixu

  • EDA分布估計(jì)算法經(jīng)典論文

    壓縮包中有5篇論文,分別為《Data-driven analysis of variables and dependencies in continuous optimization problems and EDAs》這是一篇博士論文,較為詳細(xì)的介紹了各種EDA算法;《Anisotropic adaptive variance scaling for Gaussian estimation of distribution algorithm》《Enhancing Gaussian Estimation of Distribution Algorithm by Exploiting Evolution Direction with Archive》《Niching an Archive-based Gaussian Estimation of Distribution Algorithm via Adaptive Clustering》《Supplementary material for Enhancing Gaussian Estimation of Distribution Algorithm by Exploiting Evolution Direction with Archive》《基于一般二階混合矩的高斯分布估計(jì)算法》介紹了一些基于EDA的創(chuàng)新算法。

    標(biāo)簽: EDA 分布估計(jì)算法 論文

    上傳時間: 2020-05-25

    上傳用戶:duwenhao

  • 機(jī)器學(xué)習(xí)算法 朱塞佩·博納科爾索【意】

    介紹了數(shù)據(jù)科學(xué)領(lǐng)域常用的所有重要機(jī)器學(xué)習(xí)算法以及TensorFlow和特征工程等相關(guān)內(nèi)容。涵蓋的算法包括線性回歸、邏輯回歸、支持向量機(jī)、樸素貝葉斯、K均值、隨機(jī)森林等,這些算法可以用于監(jiān)督學(xué)習(xí)、非監(jiān)督學(xué)習(xí)、強(qiáng)化學(xué)習(xí)或半監(jiān)督學(xué)習(xí)。本書在簡明扼要地闡明基本原理的基礎(chǔ)上,側(cè)重于介紹如何在Python環(huán)境下使用機(jī)器學(xué)習(xí)方法庫,并通過大量實(shí)例清晰形象的展示了不同場景下機(jī)器學(xué)習(xí)方法的應(yīng)用。

    標(biāo)簽: 機(jī)器學(xué)習(xí) 算法 middot

    上傳時間: 2021-10-21

    上傳用戶:d1997wayne

  • 終極算法 ——機(jī)器學(xué)習(xí)和人工智能如何重塑世界

    第一章 機(jī)器學(xué)習(xí)革命學(xué)習(xí)算法入門為何商業(yè)擁護(hù)機(jī)器學(xué)習(xí)給科學(xué)方法增壓10億個比爾·克林頓學(xué)習(xí)算法與國家安全我們將走向何方第二章 終極算法來自神經(jīng)科學(xué)的論證來自進(jìn)化論的論證來自物理學(xué)的論證來自統(tǒng)計(jì)學(xué)的論證來自計(jì)算機(jī)科學(xué)的論證機(jī)器學(xué)習(xí)算法與知識工程師天鵝咬了機(jī)器人終極算法是狐貍,還是刺猬我們正面臨什么危機(jī)新的萬有理論未達(dá)標(biāo)準(zhǔn)的終極算法候選項(xiàng)機(jī)器學(xué)習(xí)的五大學(xué)派第三章 符號學(xué)派:休謨的歸納問題特別說明:僅作為愛好者學(xué)習(xí)使用(請勿商用)!本文檔由人工智能吧(QQ群 565128329)整理提供并更多學(xué)習(xí)分享,若覺得不錯請購買印刷版書籍。約不約“天下沒有免費(fèi)的午餐”定理對知識泵進(jìn)行預(yù)設(shè)如何征服世界在無知與幻覺之間你能信任的準(zhǔn)確度歸納是逆向的演繹掌握治愈癌癥的方法20問游戲符號學(xué)派第四章 聯(lián)結(jié)學(xué)派:大腦如何學(xué)習(xí)感知器的興盛與衰亡物理學(xué)家用玻璃制作大腦世界上最重要的曲線攀登超空間里的高峰感知器的復(fù)仇一個完整的細(xì)胞模型大腦的更深處第五章 進(jìn)化學(xué)派:自然的學(xué)習(xí)算法達(dá)爾文的算法探索:利用困境程序的適者生存法則性有何用先天與后天誰學(xué)得最快,誰就會贏第六章 貝葉斯學(xué)派:在貝葉斯教堂里統(tǒng)治世界的定理所有模型都是錯的,但有些卻有用從《尤金·奧涅金》到Siri所有東西都有關(guān)聯(lián),但不是直接關(guān)聯(lián)推理問題掌握貝葉斯學(xué)派的方法馬爾可夫權(quán)衡證據(jù)邏輯與概率:一對不幸的組合第七章 類推學(xué)派:像什么就是什么完美另一半維數(shù)災(zāi)難空中蛇災(zāi)爬上梯子起床啦第八章 無師自通物以類聚,人以群分發(fā)現(xiàn)數(shù)據(jù)的形狀擁護(hù)享樂主義的機(jī)器人熟能生巧學(xué)會關(guān)聯(lián)第九章 解開迷惑萬里挑一終極算法之城馬爾科夫邏輯網(wǎng)絡(luò)從休謨到你的家用機(jī)器人行星尺度機(jī)器學(xué)習(xí)醫(yī)生馬上來看你第十章 建立在機(jī)器學(xué)習(xí)之上的世界性、謊言和機(jī)器學(xué)習(xí)數(shù)碼鏡子充滿模型的社會分享與否?方式、地點(diǎn)如何?神經(jīng)網(wǎng)絡(luò)搶了我的工作戰(zhàn)爭不屬于人類谷歌+終極算法=天網(wǎng)?進(jìn)化的第二部分

    標(biāo)簽: 機(jī)器學(xué)習(xí) 人工智能

    上傳時間: 2022-05-07

    上傳用戶:

  • 數(shù)據(jù)結(jié)構(gòu)與算法分析C++描述第三版.pdf

    《數(shù)據(jù)結(jié)構(gòu)與算法分析C++描述》 (第3版)是數(shù)據(jù)結(jié)構(gòu)和算法分析的經(jīng)典教材,書中使用主流的程序設(shè)計(jì)語言C++作為具體的實(shí)現(xiàn)語言。書的內(nèi)容包括表、棧、隊(duì)列、樹、散列表、優(yōu)先隊(duì)列、排序、不相交集算法、圖論算法、算法分析、算法設(shè)計(jì)、攤還分析、查找樹算法、k-d樹和配對堆等。編輯推薦《數(shù)據(jù)結(jié)構(gòu)與算法分析C++描述》(第3版)適合作為計(jì)算機(jī)相關(guān)專業(yè)本科生的數(shù)據(jù)結(jié)構(gòu)課程和研究生算法分析課程的教材。本科生的數(shù)據(jù)結(jié)構(gòu)課程可以使用本書第1章~第9章,多學(xué)時課程還可以講解第10章;研究生算法分析課程可以使用第6章~第12章。作者簡介作者:(美國)維斯 (Mark Allen Weiss) 譯者:張懷勇 等Mark Allen Weiss,1987年在普林斯頓大學(xué)獲得計(jì)算機(jī)科學(xué)博士學(xué)位,師從著名算法大師Robert Sedgewick,現(xiàn)任美國佛羅里達(dá)國際大學(xué)計(jì)算與信息科學(xué)學(xué)院教授。他曾經(jīng)擔(dān)任全美AP(Advanced Placement)考試計(jì)算機(jī)學(xué)科委員會的主席(2000-2004)。他的主要研究方向是數(shù)據(jù)結(jié)構(gòu),算法和教育學(xué)。

    標(biāo)簽: 數(shù)據(jù)結(jié)構(gòu) C++

    上傳時間: 2022-05-12

    上傳用戶:

  • (網(wǎng)盤)高斯課堂-電路

    高斯課堂_電路(課時五-課時十三)《電路》講義筆記【高斯課堂】《電路》講義筆記【高斯課堂】.pdf - 8.26MB課時五-基本定理的應(yīng)用.mp4 - 590.16MB課時十一-(選學(xué))運(yùn)算法.mp4 - 162.83MB課時十三-(選學(xué))串并聯(lián)諧振電路.mp4 - 120.37MB課時十二-(選學(xué))二端口電路.mp4 - 139.98MB課時十-(選學(xué))三相電路.mp4 - 246.14MB課時七-正弦穩(wěn)態(tài)分析基礎(chǔ)(一).mp4 - 371.02MB課時六-動態(tài)電路分析.mp4 - 301.15MB課時九-耦合電感與理想變壓器.mp4 - 178.10MB課時八-正弦穩(wěn)態(tài)分析基礎(chǔ)(二).mp4 - 175.23MB《電路》同步講義筆記【高斯課堂】.pdf - 8.27MB

    標(biāo)簽: 電路

    上傳時間: 2022-06-05

    上傳用戶:qdxqdxqdxqdx

主站蜘蛛池模板: 峨边| 武穴市| 囊谦县| 枞阳县| 麻栗坡县| 始兴县| 增城市| 乌恰县| 成安县| 防城港市| 汾阳市| 疏附县| 岐山县| 信丰县| 西宁市| 廉江市| 霍州市| 昌都县| 云安县| 桃园县| 监利县| 仙居县| 越西县| 沙坪坝区| 库尔勒市| 茂名市| 宜兰县| 长沙县| 芦山县| 富源县| 武义县| 灵山县| 芮城县| 望奎县| 黑龙江省| 尚志市| 丰顺县| 英超| 镇坪县| 崇义县| 满城县|