互聯(lián)網(wǎng)、移動通信、星基導航是21世紀信息社會的三大支柱產(chǎn)業(yè),而GPS系統(tǒng)的技術水平和發(fā)展歷程代表著全世界衛(wèi)星導航系統(tǒng)的發(fā)展狀況。目前,我國已經(jīng)成為GPS的使用大國,衛(wèi)星導航產(chǎn)業(yè)鏈也已基本形成。然而,我們對GPS核心技術的研究還不夠深入,我國GPS產(chǎn)品的核心部分多數(shù)還是靠進口。 GPS接收機工作時,為了將本地信號和接收到的信號同步,要完成復雜的信號處理過程。其中,如何捕獲衛(wèi)星信號并保持對信號的跟蹤是最重要的核心技術。很多研究者提出了多種解決方法,但這些方法多數(shù)都只停留在理論階段,無法應用于GPS接收機系統(tǒng)進行實時處理。 本課題在分析了多種現(xiàn)有算法的基礎上,研究設計了基于FPGA的GPS信號捕獲與跟蹤系統(tǒng)。在研究過程中,首先利用Nemerix公司的GPS芯片組設計制作了GPS接收機模塊,它能正常穩(wěn)定地工作,并可用作GPS基帶信號處理的研究平臺;該平臺可實時地輸出GPS數(shù)字中頻信號;本課題在中頻信號的基礎上深入研究了GPS信號的捕獲與跟蹤技術。先詳細分析比較了幾種GPS信號捕獲方法,給出了步進相關的捕獲方案;接著分析了跟蹤環(huán)路的特點,給出了鎖頻環(huán)和鎖相環(huán)交替工作跟蹤載波以及載波輔助偽碼的跟蹤方案,并最終實現(xiàn)了這些方案。 本課題設計的GPS信號捕獲與跟蹤處理系統(tǒng)是通過硬件和軟件協(xié)同工作的方式實現(xiàn)的。硬件電路主要實現(xiàn)數(shù)據(jù)速率高、邏輯簡單的相關器功能;而基于MicroBlaze軟處理器的軟件主要實現(xiàn)數(shù)據(jù)速率低、邏輯復雜的功能。本文給出了硬件電路的詳細設計、仿真結果以及軟件設計的詳細流程。 本課題最終在FPGA上實現(xiàn)了GPS信號的捕獲與跟蹤功能,而且系統(tǒng)的性能良好。由此可以得出結論:本設計能夠滿足系統(tǒng)功能和性能的要求,可以直接用于實時GPS接收機系統(tǒng)的設計中,為自主設計GPS接收機奠定了基礎。 本課題的研究得到了大連市信息產(chǎn)業(yè)局集成電路設計專項的資助,項目名稱是“定位與通信集成功能的SOC設計”,研究成果將在2008年上半年投入試用。
上傳時間: 2013-04-24
上傳用戶:1583060504
隨著交通工具的迅猛發(fā)展,智能交通系統(tǒng)(Intelligent TransportationSystems,簡稱ITS)在交通管理中受到廣泛的關注。而在ITS中,車牌識別(LicensePlate Recognition,簡稱LPR)是其核心技術。車牌識別系統(tǒng)主要由數(shù)據(jù)采集和車牌識別算法兩個部分組成。由于車牌清晰程度、攝像機性能、氣候條件等因素的影響,牌照中的字符可能出現(xiàn)不清楚、扭曲、缺損或污跡干擾,這都給識別造成一定難度。因此,在復雜背景中快速準確地進行車牌定位成為車牌識別系統(tǒng)的難點。 本文研究和設計了一種集圖象采集,圖象識別,圖象傳輸?shù)扔谝惑w的實時嵌入式系統(tǒng)。該平臺包括硬件系統(tǒng)設計與應用程序開發(fā)兩個方面,充分利用TI公司的C6000系列DSP強大的并行運算能力、以及FPGA的靈活時序邏輯控制技術,從硬件方面實現(xiàn)系統(tǒng)的高速運行。 本文的主要工作有兩部分組成,具體如下: (1) 在硬件設計方面:實現(xiàn)由A/D、電源、FPGA、DSP以及SDRAM和FLASH所組成的車牌識別系統(tǒng);設計并完成系統(tǒng)的原理圖和印制板圖;完成電路板調試,以及完成FPGA.在高速圖像采集中的veriIog應用程序開發(fā)。 (2) 在軟件開發(fā)方面:完成Philips公司的SAA7113H的配置代碼開發(fā),以及DSP底層的部分驅動程序開發(fā)。 該系統(tǒng)能夠實現(xiàn)25幀每秒的數(shù)字視頻流圖像數(shù)據(jù)的輸出,并由FPGA負責完成一幅720×572數(shù)據(jù)量的圖像采集。DSP負責系統(tǒng)的嵌入式操作,包括系統(tǒng)的控制和車牌識別算法的實現(xiàn)。 目前,嵌入式車牌識別系統(tǒng)硬件平臺已經(jīng)搭建成功,系統(tǒng)軟件代碼程序也已經(jīng)開發(fā)完成。本系統(tǒng)能夠實現(xiàn)高速圖像采集、嵌入式操作與車牌識別算法、UART數(shù)據(jù)通信等功能,具有速度快、穩(wěn)定性高、體積小、功耗低等特點,為車牌識別算法提供一個較好的驗證平臺。
標簽: FPGA DSP 車牌識別系統(tǒng)
上傳時間: 2013-04-24
上傳用戶:yangbo69
運動控制技術是機電一體化的核心部分,提高運動控制技術水平對于提高我國的機電一體化技術具有至關重要的作用。運動控制技術的發(fā)展是制造自動化前進的旋律,是推動新的產(chǎn)業(yè)革命的關鍵技術。對于數(shù)控系統(tǒng)來說,最重要的是控制各個電機軸的運動,這是運動控制器接收并依照數(shù)控裝置的指令來控制各個電機軸運動從而實現(xiàn)數(shù)控加工的,數(shù)據(jù)加工中的定位控制精度、速度調節(jié)的性能等重要指標都與運動控制器直接相關。目前對數(shù)控系統(tǒng)的研究都集中在插入PC的NC控制器的研究上,而其核心部分就是對步進、伺服電機進行控制的運動控制卡的研究。對PC-NC來說,運動控制卡的性能很大程度上決定了整個數(shù)控系統(tǒng)的性能,而微電子和數(shù)字信號處理技術的發(fā)展及其應用,使運動控制卡的性能得到了不斷改進,集成度和可靠性大大提高。 本課題通過對運動控制技術的深入研究,并針對國內運動控制技術的研究起步較晚的現(xiàn)狀,結合當前運動控制領域的具體需要,緊跟當前運動控制技術研究的發(fā)展趨勢,吸收了數(shù)控技術和相關運動控制技術的最新成果,提出了基于PCI和FPGA的方案,研制了一款比較新穎的、功能強大的、具有很大柔性的四軸多功能運動控制卡。 本課題的具體研究主要有以下幾方面: 首先,通過對運動控制卡及運動控制系統(tǒng)等行業(yè)現(xiàn)狀的全面調研,和對運動控制技術的深入學習,在比較了幾種常用的運動控制方案的基礎上,提出了基于FPGA的運動控制設計方案,并規(guī)劃了板卡的總體設計。 其次,根據(jù)總體設計,規(guī)劃了板卡的結構,詳細劃分并實現(xiàn)了FPGA各部分的功能;利用光電隔離原理設計了數(shù)字輸入/輸出電路。 再次,利用FPGA的資源實現(xiàn)了PCI從設備接口,達到跟控制卡通信的目的,針對運動控制中的一些具體問題,如運動平穩(wěn)性、實時控制以及多軸聯(lián)動等,在FPGA上設計了四軸運動控制電路,定義了各個寄存器的具體功能,設計了功能齊全的加/減速控制電路、變頻分配電路、倍頻分頻電路和三個功能各異的計數(shù)器電路等,自動降速點運動、A/B相編碼器倍頻計數(shù)電路等特殊功能。最后,進行了本運動控制卡的測試,從測試和應用結果來看,該卡達到預期的要求。
上傳時間: 2013-07-27
上傳用戶:zgu489
數(shù)控系統(tǒng)在工礦領域已得到廣泛應用,計算機數(shù)控系統(tǒng)通過對數(shù)字化信息的處理和運算,并轉化成脈沖信號,實現(xiàn)對步進電機的控制,進而控制數(shù)控機床動作和零件加工。隨著嵌入式技術的發(fā)展,我們可以設計規(guī)模更小,成本更低,功能更特定的嵌入式系統(tǒng)來完成傳統(tǒng)計算機數(shù)控系統(tǒng)所完成的工作。 步進電機以其精度高、控制靈活、定位準確、起停迅速、工作可靠、能直接接受數(shù)字信號的特點,成為數(shù)控系統(tǒng)中的重要執(zhí)行部件。然而根據(jù)步進電機的特性,必須要采取適當而有效的升降速控制策略,特別是在多電機連動的系統(tǒng)中,對多個電機連動的速度控制和脈沖分配也很值得研究。在本文中作者將介紹一種三軸連動的速度控制和脈沖分配的優(yōu)化算法,以及其在基于FPGA和ARM配合的高速數(shù)控雕刻機控制系統(tǒng)中的實現(xiàn)。 在本文中還可以看見,為了減小本系統(tǒng)中主控MCU的壓力,作者還將利用FPGA來設計一個針對多電機連動的速度控制和脈沖分配優(yōu)化算法的外圍定制控制器。 最終實驗結果表明,作者所提出的優(yōu)化算法及其在本系統(tǒng)的實現(xiàn)方案,完全達到客戶所提出的高速數(shù)控雕刻機控制系統(tǒng)的各項設計性能指標。
上傳時間: 2013-07-02
上傳用戶:dreamboy36
在測井過程中,由于測井深度直接影響到其它測井信息的準確性,所以精確的測井深度變得越來越重要。本文針對現(xiàn)有絞車系統(tǒng)的不足(CPU為單片機決定其精度不高、缺少完善的深度校正系統(tǒng)等),首次將DSP與FPGA應用到測井絞車系統(tǒng)中,充分利用FPGA硬件資源豐富、速度快及DSP軟件設計靈活的特點,使系統(tǒng)硬件、軟件結構更加合理,功能得到增強,性價比進一步提高,從而優(yōu)化了整個系統(tǒng),為今后絞車設計提供了新的方法和途徑。 本文相對其它絞車系統(tǒng)的設計,主要特點有:設計了比較完善的深度校正模塊(深度脈沖校正、根據(jù)磁記號與磁定位信號的校正、由張力等原因引起的電纜形變的校正)。將打標和測量一體化。設計了方便的通信接口(校正后的深度脈沖及DSP通過RS232與主測井儀的通信)。使用DSP作為CPU并且配合FPGA作預處理從而提高了測量深度的準確性。電路采用了可編程邏輯器件,提高了電路工作的可靠性,減小了電路板面積。另外,本文在研究電纜絞車系統(tǒng)的同時,對測井的地面信號處理也進行了初步的研究,主要是對趨膚效應的校正做了初步的研究。 本文所完成的是一個完整的測量與打標系統(tǒng),通過室內與現(xiàn)場實驗,得出該系統(tǒng)具有高精度、高智能化等優(yōu)點。最后,本文對該系統(tǒng)的發(fā)展方向作了展望。
標簽: FPGA DSP 絞車 系統(tǒng)研究
上傳時間: 2013-07-08
上傳用戶:星仔
在機器人學的研究領域中,如何有效地提高機器人控制系統(tǒng)的控制性能始終是研究學者十分關注的一個重要內容。在分析了工業(yè)機器人的發(fā)展歷程和機器人控制系統(tǒng)的研究現(xiàn)狀后,本論文的主要目標是針對四關節(jié)實驗室機器人特有的機械結構和數(shù)學模型,建立一個新型全數(shù)字的基于DSP和FPGA的機器人位置伺服控制系統(tǒng)的軟、硬件平臺,實現(xiàn)對四關節(jié)實驗室機器人的精確控制。 本論文從實際情況出發(fā),首先分析了所研究的四關節(jié)實驗室機器人的本體結構,并對其抽象簡化得到了它的運動學數(shù)學模型。在明確了實現(xiàn)機器人精確位置伺服控制的控制原理后,我們對機器人控制系統(tǒng)的諸多可行性方案進行了充分論證,并最終決定采用了三級CPU控制的控制體系結構:第一級CPU為上位計算機,它實現(xiàn)對機器人的系統(tǒng)管理、協(xié)調控制以及完成機器人實時軌跡規(guī)劃等控制算法的運算;第二級CPU為高性能的DSP處理器,它輔之以具有高速并行處理能力的FPGA芯片,實現(xiàn)了對機器人多個關節(jié)的高速并行驅動;第三級CPU為交流伺服驅動處理器,它實現(xiàn)了機器人關節(jié)伺服電機的精確三閉環(huán)誤差驅動控制,以及電機的故障診斷和自動保護等功能。此外,我們采用比普通UART速度快得多的USB來實現(xiàn)上位計算機.與下位控制器之間的數(shù)據(jù)通信,這樣既保證了兩者之間連接方便,又有效的提高了控制系統(tǒng)的通信速度和可靠性。 機器人系統(tǒng)的軟件設計包括兩個部分:一是采用VC++實現(xiàn)的上位監(jiān)控軟件系統(tǒng),它主要負責機器人實時軌跡規(guī)劃等控制算法的運算,同時完成用戶與機器人系統(tǒng)之間的信息交互;二是采用C語言實現(xiàn)的下位DSP控制程序,它主要負責接收上位監(jiān)控系統(tǒng)或者下位控制箱發(fā)送的控制信號,實現(xiàn)對機器人的實時驅動,同時還能夠實時的向上位監(jiān)控系統(tǒng)或者下位控制箱反饋機器人的當前狀態(tài)信息。 研究開發(fā)出來的四關節(jié)實驗室機器人控制器具有控制實時性好、定位精度高、運行穩(wěn)定可靠的特點,它允許用戶通過上位控制計算機實現(xiàn)對機器人的各種設定作業(yè)的控制,也可以讓用戶通過機器人控制箱現(xiàn)場對機器人進行回零、示教等各項操作。
上傳時間: 2013-06-11
上傳用戶:edisonfather
通信領域的主導技術有兩種:用于內部商業(yè)通信的局域網(wǎng)(LAN)中的以太網(wǎng)(Ethernet)和廣域網(wǎng)(WAN)中的SDH(SynchronousDigitalHierarchy)。因為在SDH網(wǎng)絡上不直接支持以太網(wǎng),當企業(yè)(客戶)間需要彼此通信或企業(yè)(客戶)內需要將其總部與分部連至同一LAN網(wǎng)時互連問題便應運而生。 該研究課題的目的是研究在EoS(EthernetoverSDH)實現(xiàn)過程中存在的技術難題和協(xié)議實現(xiàn)的復雜性,提出一種簡單、快速、高效的協(xié)議實現(xiàn)方法。主要關注的是EoS系統(tǒng)中與協(xié)議幀映射相關的關鍵技術,例如:自定義幀結構、幀定位、全數(shù)字鎖相技術、流量控制技術等,最終完成EoS中這些關鍵技術模塊的設計。 該課題簡單分析EoS系統(tǒng)相關協(xié)議幀結構及EoS系統(tǒng)的原理,闡述了FPGA技術的實現(xiàn)方法,重點在于利用業(yè)界最先進的EDA工具實現(xiàn)EoS系統(tǒng)中幀映射技術。系統(tǒng)中采用一種簡化了的點對點實現(xiàn)方案,對以太網(wǎng)的數(shù)據(jù)幀直接進行HDLC幀格式封裝,采用多通道的E1信道承載完整的HIDLC幀方式將HDLC幀映射到E1信道中,然后采用單通道承載多個完整的E1幀方式將E1映射到SDH信道中,從而把以太網(wǎng)幀有效地映射到SDH的負荷中,實現(xiàn)“透明的局域網(wǎng)服務”。這對在現(xiàn)有的SDH傳輸設備上承載以太網(wǎng),開發(fā)實現(xiàn)以太網(wǎng)的廣域連接設備,將會具有重要的意義。
上傳時間: 2013-04-24
上傳用戶:bugtamor
工程機械監(jiān)控系統(tǒng)是利用計算機技術、現(xiàn)場總線技術、無線通信技術以及衛(wèi)星定位技術對工程機械的運行狀態(tài)、位置等進行監(jiān)測,是一個既復雜又龐大的系統(tǒng),涉及的領域廣,而且由于其工作環(huán)境的特殊性,對系統(tǒng)的安全性、穩(wěn)定性要求特別高。現(xiàn)在隨著嵌入式技術的不斷成熟與發(fā)展,高可靠性、小型化、人性化、網(wǎng)絡化和智能化將是其發(fā)展方向。 本文采用底層單元控制系統(tǒng)、車載監(jiān)控系統(tǒng)和遠程監(jiān)控系統(tǒng)三級網(wǎng)絡總體結構,對起重機底層安全控制單元進行監(jiān)控。在底層單元中引入CAN總線,研究基于CAN總線協(xié)議的Hilon A協(xié)議實現(xiàn)底層各單元的通信。中間層以S3C2410和Linux為核心,融合嵌入式技術,開發(fā)Qt.Embedded界面,對實時采集起重機的吊重、風速、仰角信號狀態(tài)參數(shù),以及通過計算比較判斷是否發(fā)生異常的狀態(tài)進行顯示。最后研究了GPRS網(wǎng)絡,完成遠程數(shù)據(jù)傳輸和遠程終端監(jiān)控的通訊。 文中詳細介紹了系統(tǒng)的各部分硬件設計,結合硬件平臺實現(xiàn)了Linux操作系統(tǒng)的移植、引導加載程序BootLoader,構建了根文件系統(tǒng)。結合Linux操作系統(tǒng)平臺,實現(xiàn)了CAN總線通信、GPRS通訊、PPP腳本撥號、Socket網(wǎng)絡編程、LCD幀緩沖顯示設備Framebuffer、觸摸屏、A/D轉換器驅動程序的開發(fā),并通過嵌入式圖形用戶Qt/Embedded在嵌入式Linux平臺上的移植,開發(fā)了友好的人機交互界面。
標簽: ARMLinux 車載監(jiān)控
上傳時間: 2013-06-30
上傳用戶:康郎
嵌入式技術與GPRS、GPS的結合實現(xiàn)了許多傳統(tǒng)的數(shù)據(jù)終端通過遠程聯(lián)網(wǎng)進行無線監(jiān)控,如車載GPS監(jiān)控系統(tǒng)、農業(yè)現(xiàn)場環(huán)境信息監(jiān)控系統(tǒng)、航標定位監(jiān)控系統(tǒng)等等。此類系統(tǒng)的終端具有以下特點:一是監(jiān)控終端自身是智能設備:二是監(jiān)控終端需要將GPS測量的位置報告給監(jiān)控中心;三是監(jiān)控終端本身無法通過網(wǎng)線接入互聯(lián)網(wǎng)而需要采用GPRS無線通信技術接入互聯(lián)網(wǎng)。 本論文主要研究GPS無線監(jiān)控系統(tǒng)中的無線監(jiān)控終端部分的理論與實現(xiàn)技術。利用現(xiàn)有成熟的無線網(wǎng)GPRS通信技術,采用嵌入式處理器ARM的無線監(jiān)控終端,并給出軟硬件實現(xiàn)方案。系統(tǒng)主要完成GPS數(shù)據(jù)采集和GPRS無線數(shù)據(jù)收發(fā),主要包括四個部分:第一,PPP撥號程序pppd和chat的移植;第二,撥號腳本的修改與配置;第三,多進程技術實現(xiàn)GPS數(shù)據(jù)的串口讀取;第四,通過socket套接字編程實現(xiàn)監(jiān)控終端和監(jiān)控中心無線收發(fā)數(shù)據(jù)。 本設計是基于RedHatLinux9.0操作系統(tǒng)和立宇泰公司的ARMSYS2410開發(fā)平臺下完成的,軟件部分全部用Linux C語言實現(xiàn)。本文以理論聯(lián)系實際,給出了一個監(jiān)控終端的具體實現(xiàn)方案,并在實驗室內使用服務器監(jiān)控程序進行完整的系統(tǒng)設計與初步仿真實現(xiàn)。
標簽: ARMLinux GPRS GPS 監(jiān)控終端
上傳時間: 2013-07-06
上傳用戶:aappkkee
在測井過程中,由于測井深度直接影響到其它測井信息的準確性,所以精確的測井深度變得越來越重要。本文針對現(xiàn)有絞車系統(tǒng)的不足(CPU為單片機決定其精度不高、缺少完善的深度校正系統(tǒng)等),首次將DSP與FPGA應用到測井絞車系統(tǒng)中,充分利用FPGA硬件資源豐富、速度快及DSP軟件設計靈活的特點,使系統(tǒng)硬件、軟件結構更加合理,功能得到增強,性價比進一步提高,從而優(yōu)化了整個系統(tǒng),為今后絞車設計提供了新的方法和途徑。 本文相對其它絞車系統(tǒng)的設計,主要特點有:設計了比較完善的深度校正模塊(深度脈沖校正、根據(jù)磁記號與磁定位信號的校正、由張力等原因引起的電纜形變的校正)。將打標和測量一體化。設計了方便的通信接口(校正后的深度脈沖及DSP通過RS232與主測井儀的通信)。使用DSP作為CPU并且配合FPGA作預處理從而提高了測量深度的準確性。電路采用了可編程邏輯器件,提高了電路工作的可靠性,減小了電路板面積。另外,本文在研究電纜絞車系統(tǒng)的同時,對測井的地面信號處理也進行了初步的研究,主要是對趨膚效應的校正做了初步的研究。 本文所完成的是一個完整的測量與打標系統(tǒng),通過室內與現(xiàn)場實驗,得出該系統(tǒng)具有高精度、高智能化等優(yōu)點。最后,本文對該系統(tǒng)的發(fā)展方向作了展望。
標簽: FPGA DSP 絞車 系統(tǒng)研究
上傳時間: 2013-05-18
上傳用戶:黃華強