LinQ SQL TẤ N CÔ NG KIỂ U SQL INJECTION - TÁ C HẠ I VÀ PHÒ NG TRÁ NH
上傳時間: 2013-12-15
上傳用戶:eclipse
DELPHI車輛管理系統 幾經修改,完善不少
上傳時間: 2017-09-14
上傳用戶:ynsnjs
國標類相關專輯 313冊 701MGB-T 2471-1995 電阻器和電容器優先數系.pdf
標簽:
上傳時間: 2014-05-05
上傳用戶:時代將軍
碼元定時恢復(位同步)技術是數字通信中的關鍵技術。位同步信號本身的抖動、錯位會直接降低通信設備的抗干擾性能,使誤碼率上升,甚至會使傳輸遭到完全破壞。尤其對于突發傳輸系統,快速、精確的定時同步算法是近年來研究的一個焦點。本文就是以Inmarsat GES/AES數據接收系統為背景,研究了突發通信傳輸模式下的全數字接收機中位同步方法,并予以實現。 本文系統地論述了位同步原理,在此基礎上著重研究了位同步的系統結構、碼元定時恢復算法以及衡量系統性能的各項指標,為后續工作奠定了基礎。 首先根據衛星系統突發信道傳輸的特點分析了傳統位同步方法在突發系統中的不足,接下來對Inmarsat系統的短突發R信道和長突發T信道的調制方式和幀結構做了細致的分析,并在Agilent ADS中進行了仿真。 在此基礎上提出了一種充分利用報頭前導比特信息的,由滑動平均、閾值判斷和累加求極值組成的快速報頭時鐘捕獲方法,此方法可快速精準地完成短突發形式下的位同步,并在FPGA上予以實現,效果良好。 在長突發形式下的報頭時鐘捕獲后還需要對后續數據進行位同步跟蹤,在跟蹤過程中本論文首先用DSP Builder實現了插值環路的位同步算法,進行了Matlab仿真和FPGA實現。并在插值環路的基礎上做出改進,提出了一種新的高效的基于移位算法的位同步方案并予以FPGA實現。最后將移位算法與插值算法進行了性能比較,證明該算法更適合于本項目中Inmarsat的長突發信道位同步跟蹤。 論文對兩個突發信道的位同步系統進行了理論研究、算法設計以及硬件實現的全過程,滿足系統要求。
上傳時間: 2013-04-24
上傳用戶:yare
碼元定時恢復(位同步)技術是數字通信中的關鍵技術。位同步信號本身的抖動、錯位會直接降低通信設備的抗干擾性能,使誤碼率上升,甚至會使傳輸遭到完全破壞。尤其對于突發傳輸系統,快速、精確的定時同步算法是近年來研究的一個焦點。本文就是以Inmarsat GES/AES數據接收系統為背景,研究了突發通信傳輸模式下的全數字接收機中位同步方法,并予以實現。 本文系統地論述了位同步原理,在此基礎上著重研究了位同步的系統結構、碼元定時恢復算法以及衡量系統性能的各項指標,為后續工作奠定了基礎。 首先根據衛星系統突發信道傳輸的特點分析了傳統位同步方法在突發系統中的不足,接下來對Inmarsat系統的短突發R信道和長突發T信道的調制方式和幀結構做了細致的分析,并在Agilent ADS中進行了仿真。 在此基礎上提出了一種充分利用報頭前導比特信息的,由滑動平均、閾值判斷和累加求極值組成的快速報頭時鐘捕獲方法,此方法可快速精準地完成短突發形式下的位同步,并在FPGA上予以實現,效果良好。 在長突發形式下的報頭時鐘捕獲后還需要對后續數據進行位同步跟蹤,在跟蹤過程中本論文首先用DSP Builder實現了插值環路的位同步算法,進行了Matlab仿真和FPGA實現。并在插值環路的基礎上做出改進,提出了一種新的高效的基于移位算法的位同步方案并予以FPGA實現。最后將移位算法與插值算法進行了性能比較,證明該算法更適合于本項目中Inmarsat的長突發信道位同步跟蹤。 論文對兩個突發信道的位同步系統進行了理論研究、算法設計以及硬件實現的全過程,滿足系統要求。
上傳時間: 2013-04-24
上傳用戶:zukfu
圖1所示電路可將高頻單端輸入信號轉換為平衡差分信號,用于驅動16位10 MSPS PulSAR® ADC AD7626。該電路采用低功耗差分放大器ADA4932-1來驅動ADC,最大限度提升AD7626的高頻輸入信號音性能。此器件組合的真正優勢在于低功耗、高性能
上傳時間: 2013-10-21
上傳用戶:佳期如夢
本文主要以MSP430G2231 系列為例, 講述了利用內部定時器來模擬DAC、軟件UART 與PC 進行通訊,并通過串口對應用程序 進行在線升級的方法。本文給出了實現上述功能的硬件電路以及軟件代碼。實驗證明,通 過MSP430G 系列的16 位定時器可以容易的實現8 位分辨率的DAC;通過軟件模擬的 UART 能夠與PC 機進行穩定可靠的通訊;通過BSL 程序可以對用戶程序進行板上在線應 用編程。最后結合一個實例講述MSP430G 系列在汽車車窗以及工業消費類電子產品的實際應用。
上傳時間: 2013-10-16
上傳用戶:開懷常笑
摘要:本文詳細的介紹了基于施耐德Modicon Premium T PCX 57 PLC在郵政自動化分揀系統中控制系統的應用,系統的網絡拓撲結構,工藝流程和信息采集等。關鍵詞:T PCX57 PLC FIPIO總線 OPC Momentum I/O模塊 分揀系統
上傳時間: 2013-11-10
上傳用戶:kristycreasy
離散傅里葉變換,(DFT)Direct Fouriet Transformer(PPT課件) 一、序列分類對一個序列長度未加以任何限制,則一個序列可分為: 無限長序列:n=-∞~∞或n=0~∞或n=-∞~ 0 有限長序列:0≤n≤N-1有限長序列在數字信號處理是很重要的一種序列。由于計算機容量的限制,只能對過程進行逐段分析。二、DFT引入由于有限長序列,引入DFT(離散付里葉變換)。DFT它是反映了“有限長”這一特點的一種有用工具。DFT變換除了作為有限長序列的一種付里葉表示,在理論上重要之外,而且由于存在著計算機DFT的有效快速算法--FFT,因而使離散付里葉變換(DFT)得以實現,它使DFT在各種數字信號處理的算法中起著核心的作用。三、本章主要討論離散付里葉變換的推導離散付里葉變換的有關性質離散付里葉變換逼近連續時間信號的問題第二節付里葉變換的幾種形式傅 里 葉 變 換 : 建 立 以 時 間 t 為 自 變 量 的 “ 信 號 ” 與 以 頻 率 f為 自 變 量 的 “ 頻 率 函 數 ”(頻譜) 之 間 的 某 種 變 換 關 系 . 所 以 “ 時 間 ” 或 “ 頻 率 ” 取 連 續 還 是 離 散 值 , 就 形 成 各 種 不 同 形 式 的 傅 里 葉 變 換 對 。, 在 深 入 討 論 離 散 傅 里 葉 變 換 D F T 之 前 , 先 概 述 四種 不 同 形式 的 傅 里 葉 變 換 對 . 一、四種不同傅里葉變換對傅 里 葉 級 數(FS):連 續 時 間 , 離 散 頻 率 的 傅 里 葉 變 換 。連 續 傅 里 葉 變 換(FT):連 續 時 間 , 連 續 頻 率 的 傅 里 葉 變 換 。序 列 的 傅 里 葉 變 換(DTFT):離 散 時 間 , 連 續 頻 率 的 傅 里 葉 變 換.離 散 傅 里 葉 變 換(DFT):離 散 時 間 , 離 散 頻 率 的 傅 里 葉 變 換1.傅 里 葉 級 數(FS)周期連續時間信號 非周期離散頻譜密度函數。 周期為Tp的周期性連續時間函數 x(t) 可展成傅里葉級數X(jkΩ0) ,是離散非周期性頻譜 , 表 示為:例子通過以下 變 換 對 可 以 看 出 時 域 的 連 續 函 數 造 成 頻 域 是 非 周 期 的 頻 譜 函 數 , 而 頻 域 的 離 散 頻 譜 就 與 時 域 的 周 期 時 間 函 數 對 應 . (頻域采樣,時域周期延 拓)2.連 續 傅 里 葉 變 換(FT)非周期連續時間信號通過連續付里葉變換(FT)得到非周期連續頻譜密度函數。
上傳時間: 2013-11-19
上傳用戶:fujiura
用單片機AT89C51改造普通雙桶洗衣機:AT89C2051作為AT89C51的簡化版雖然去掉了P0、P2等端口,使I/O口減少了,但是卻增加了一個電壓比較器,因此其功能在某些方面反而有所增強,如能用來處理模擬量、進行簡單的模數轉換等。本文利用這一功能設計了一個數字電容表,可測量容量小于2微法的電容器的容量,采用3位半數字顯示,最大顯示值為1999,讀數單位統一采用毫微法(nf),量程分四檔,讀數分別乘以相應的倍率。電路工作原理 本數字電容表以電容器的充電規律作為測量依據,測試原理見圖1。電源電路圖。 壓E+經電阻R給被測電容CX充電,CX兩端原電壓隨充電時間的增加而上升。當充電時間t等于RC時間常數τ時,CX兩端電壓約為電源電壓的63.2%,即0.632E+。數字電容表就是以該電壓作為測試基準電壓,測量電容器充電達到該電壓的時間,便能知道電容器的容量。例如,設電阻R的阻值為1千歐,CX兩端電壓上升到0.632E+所需的時間為1毫秒,那么由公式τ=RC可知CX的容量為1微法。 測量電路如圖2所示。A為AT89C2051內部構造的電壓比較器,AT89C2051 圖2 的P1.0和P1.1口除了作I/O口外,還有一個功能是作為電壓比較器的輸入端,P1.0為同相輸入端,P1.1為反相輸入端,電壓比較器的比較結果存入P3.6口對應的寄存器,P3.6口在AT89C2051外部無引腳。電壓比較器的基準電壓設定為0.632E+,在CX兩端電壓從0升到0.632E+的過程中,P3.6口輸出為0,當電池電壓CX兩端電壓一旦超過0.632E+時,P3.6口輸出變為1。以P3.6口的輸出電平為依據,用AT89C2051內部的定時器T0對充電時間進行計數,再將計數結果顯示出來即得出測量結果。整機電路見圖3。電路由單片機電路、電容充電測量電路和數碼顯示電路等 圖3 部分組成。AT89C2051內部的電壓比較器和電阻R2-R7等組成測量電路,其中R2-R5為量程電阻,由波段開關S1選擇使用,電壓比較器的基準電壓由5V電源電壓經R6、RP1、R7分壓后得到,調節RP1可調整基準電壓。當P1.2口在程序的控制下輸出高電平時,電容CX即開始充電。量程電阻R2-R5每檔以10倍遞減,故每檔顯示讀數以10倍遞增。由于單片機內部P1.2口的上拉電阻經實測約為200K,其輸出電平不能作為充電電壓用,故用R5兼作其上拉電阻,由于其它三個充電電阻和R5是串聯關系,因此R2、R3、R4應由標準值減去1K,分別為999K、99K、9K。由于999K和1M相對誤差較小,所以R2還是取1M。數碼管DS1-DS4、電阻R8-R14等組成數碼顯示電路。本機采用動態掃描顯示的方式,用軟件對字形碼譯碼。P3.0-P3.5、P3.7口作數碼顯示七段筆劃字形碼的輸出,P1.3-P1.6口作四個數碼管的動態掃描位驅動碼輸出。這里采用了共陰數碼管,由于AT89C2051的P1.3-P1.6口有25mA的下拉電流能力,所以不用三極管就能驅動數碼管。R8-R14為P3.0-P3.5、P3.7口的上拉電阻,用以驅動數碼管的各字段,當P3的某一端口輸出低電平時其對應的字段筆劃不點亮,而當其輸出高電平時,則對應的上拉電阻即能點亮相應的字段筆劃。
上傳時間: 2013-12-31
上傳用戶:ming529