針對現代中低壓電網電能質量的監測及諧波治理的需要,論文綜合運用嵌入式技術、現代信號處理技術、虛擬儀器技術設計了一種新型低功耗、集成化的電網參數監測儀。此系統實現了對三相電網相/線電壓、電流、有功功率、無功功率、視在功率、電網頻率、功率因數以及三相電壓、電流的31次以內諧波的實時監測。 論文分析了基于微處理器的電力系統基本參數的測量原理;對被測信號的交流參量通過抽樣方法獲得,由多點的抽樣數據統計得到的結果可以減小隨機誤差的影響;基于DFT和FFT的諧波測量原理,將FFT應用于諧波分析獲得信號的頻域參數;針對諧波測量中的混疊誤差設計了二階抗混疊濾波器;分析了非同步采樣和對非時限信號的截斷造成的頻譜泄露和柵欄效應及其對諧波測量精度的影響。討論了常用的幾種窗函數對頻譜泄漏的抑制作用,在此基礎上選擇加海明窗對采樣信號進行處理;針對DDS具有高精度頻率合成的特點,將其應用到電網信號的采樣上,提高了采樣的同步性,使得測量精度滿足了系統的要求。上述方法需要大量快速的迭代運算,系統微處理器選用了32位ARM芯片LPC2132,提高了系統的數據處理能力和實時性。系統供電電源采用了開關電源、減小了體積,提高了效率;完成了下位機數據采集部分、二階抗混疊濾波器、測頻電路及通信模塊電路的設計;最后介紹了軟件設計部分,主要包含了數據采集的實現過程,FFT程序的設計,給出了各部分程序的流程圖;系統上位機軟件設計了電網數據處理程序,該軟件以LabWindows/CVI6.0為開發平臺,利用CVI豐富的庫函數,完成對數據的處理、顯示和記錄等工作,并采用雙線程運行模式,在數據采集和處理的同時完成了顯示、命令的發送和運行曲線等功能。 按上述方案設計的樣機經過三次電路制作與軟件調試,主要技術參數達到了設計要求,通過了實驗室測試,目前正在電力系統諧波治理系統中進行工業實驗。
上傳時間: 2013-04-24
上傳用戶:我好難過
智能電表、水表、煤/燃氣表、熱量表等大量地出現在人們的生活中,同時這些儀表的抄錄工作變得越來越煩瑣,工作量大,工作效率低,不僅給用戶帶來不便,而且會存在漏抄、誤抄、估抄的現象。隨著電子技術、通信技術和計算機技術的飛速發展,人工抄表已經逐步被自動抄表所代替。 集中器是一個數據集中處理器,是多對象自動抄表系統的通信橋梁,負責對各智能表的數據進行采集、存儲和管理,及時有效地向上位機傳輸數據并執行上位機發送的指令。提高多對象集中器數據處理能力,有效完成上下行通信是多對象自動抄表系統AMRS(Automation Meter Reading System)目前需要解決的關鍵問題。 本文針對多對象集中器這樣一個較復雜的通信與控制系統,提出采用32位的高性能嵌入式微處理器。32位ARM9微處理器處理速度快、硬件性能高、低功耗、低成本,集成了相當多的硬件資源,硬件的擴展和設計大大簡化,ARM9(S3C2410)為工業級芯片,抗干擾能力強,能夠適應運行現場的較惡劣環境,8/16位微控制器運算能力有限,對于較復雜的通信與控制算法難以順利完成;硬件平臺依賴性強,不利于軟件的開發、升級與移植;在缺乏多任務調度機制的情況下,應用軟件不僅實現難度大,且可靠性難以保證。 本文首先對多對象遠程抄表系統的總體結構進行研究,主要研究了多對象遠程抄表系統中集中器的軟件和硬件實現,對硬件資源進行了外圍擴展,對S3C2410微處理器芯片的外圍硬件進行了擴展設計,使之具備了滿足使用需求的最小系統硬件資源,包括時鐘、復位、電源、外圍存儲、LCD、RS-485通信模塊、CAN通信模塊等電路設計。實時時鐘為多對象集中器定時抄表提供時間標準;電源電路為多對象集中器系統提供穩定電源;看門狗電路的設計保證多對象集中器系統可靠運行,防止系統死機;數據存儲器主要用于存儲參數、變量、集中器自身的參數,負責智能表的參數以及智能表用量等。上行通道即多對象集中器與上位機之間的通信線路,采用CAN現場總線進行通信;下行通道即多對象集中器與智能表之間的通信,采用RS-485總線進行通信。軟件設計上,主要針對多對象集中器的數據存儲功能和串行通訊功能進行程序編寫。基于ARM的多對象遠程抄表系統集中器可以實現多對象遠程抄表,提高了數據處理能力,有效完成了上下行通信,可靠性強,穩定性高,結構簡單。
上傳時間: 2013-06-07
上傳用戶:heminhao
目前國內井下水泵電機多數采用傳統的人工進行控制,即人工加繼電器進行控制的方法。這種方法控制線路復雜,設備運行的自動化程度低,可靠性差,工人勞動強度大,應急能力差等缺點。針對當前國家對煤礦企業安全生產要求的不斷提高和企業自身發展所遇到的實際問題,研制了基于ARM的煤礦井下水泵電機網絡監控系統,不僅可以完成水位檢測、軸溫檢測、流量檢測、水泵起動、停止及其過程控制,而且還可以進行數據傳輸、處理等工作。它具有以下特點:水位實時在線檢測與顯示;水泵啟動與停止控制;多臺水泵實時“輪班工作制”;根據涌水量大小和用電“避峰就谷”原則,控制投入運行的水泵臺數;與監控中心聯網,實行集中控制。 本文所設計的監控系統由監控中心、監控終端和遠程訪問三部分組成,分別介紹了監控系統的硬件設計、電機保護算法設計、系統通訊網絡的設計和監控系統軟件的設計。 監控系統的硬件設計主要針對監控終端的硬件設計,它采用S3C440X作為監控終端的處理芯片。根據監測的主要參數如水泵電機電流、電壓、水泵開停狀態、電機溫度、井底水倉水位、水泵出口流量的實際特點,通過ARM芯片的快速處理運算能力,實時計算出水泵的三相有功功率和無功功率、功率因數等參量,井底水倉的水位和水泵出水口的流量、水泵的三相電壓和電流準確值。把處理運算的結果通過以太網傳到監控中心進行存儲、顯示和打印,同時監控中心根據傳上來的結果進行判斷,然后根據判斷的情況確定是否需要給監控終端發送控制命令。 電機保護算法設計方面,主要針對系統數據采集的特點,對相電流、相電壓進行交流信號采樣。對采樣后的數據運用快速傅立葉變換(FFT)進行數值計算,獲得了高精度的測量。 系統通訊網絡的設計主要針對系統兩層通訊網絡的協議進行分析與設計。監控中心軟件采用基于Basic的可視化的程序設計語言Visual Basic6.0進行開發??蛻舳死糜嬎銠C網絡技術,使用B/S模式遠程實現對系統運行數據的傳輸,以便可以查詢實時數據和歷史數據,實現資源共享。
上傳時間: 2013-06-25
上傳用戶:q123321
本課題針對當前煤礦企業對水的依賴性和企業自身發展對水源的需求等實際問題,研制了基于ARM的煤礦水源井監控系統。 論文主要介紹了監控系統監控終端(RTU)的硬件設計、軟件算法設計以及通訊技術、電機的保護原理和監控系統上位機的軟件設計。 監控終端(RTU)的算法設計方面,針對系統數據信號的特點和系統分析的需要,對水位、流量、出水口壓力采用直流采樣,對相電流、相電壓采用交流信號采樣。對采樣后的數據進行數值分析和計算,獲得了高精度的煤礦水源井參數的測量和系統的控制。 通訊部分采用的是具有接收靈敏度高、頻率穩定、傳輸效率高等優點的無線數傳電臺與RS-232組成無線網絡,實現了數據的上下傳輸。 監控終端(RTU)的硬件設計方面主要采用ARM芯片作為監控分站的終端處理核心,實時檢測水源井的水位,出水口壓力、流量等參數。實時顯示水源井各參數的動態特性,并查看水位的歷史變化。同時,ARM處理器通過互感器對數據采集處理后,可計算出水泵電機的三相電流、電壓的實際值,根據電機的相序電流、電壓的大小,可對電機實時有效的微機保護。并根據監控中心命令進行相應的數據處理和數據傳送。 監控終端軟件方面主要考慮到時實采樣的準確性,uClinux系統在ARM系統上數據處理的快速性與實時性,以及與監控系統軟件的通信顯示方面的可行性與有效性。 系統監控的軟件利用VC++6.0中的編程進行實時數據的采集處理和控制、數據的實時顯示、報表打印和報警等功能。通過ADO對象和SQL Sever,與windows系統上的數據庫服務器進行實時數據的交互。
上傳時間: 2013-05-16
上傳用戶:lingduhanya
隨著嵌入式的廣泛應用,對傳統的數據采集系統的改造,開發新型的嵌入式采集系統,目前已成為研制的熱點。起重機采集系統類似于飛機上的“黑匣子”,能自動記錄起重機運行數據,并能以文件的形式存儲起重機的運行數據,而且可以通過USB通信接口實現數據的轉移。與傳統的采集數據相比,此系統有采集速度快,性能穩,功耗低,讀取數據方便的優點。只需插入U盤,幾分鐘內就可以將數據取走,避免了傳統將電腦帶入現場采集數據的缺點。在起重機采集系統的項目開發過程中,本人的主要工作是實現數據采集模塊的設計,通過構建基于ARM微處理器和開源Linux操作系統的平臺,實現起重機運行數據的U盤存儲。 本研究首先對課題研究的背景和整個系統做了概述;其次詳述了系統的硬件設計和Linux移植到AT91RM9200平臺的方法;然后詳細討論了系統的軟件設計即基于Linux的U盤驅動的實現以及Mass Storage類協議及其子類UFI命令集,并采用單批量傳輸協議實現了部分UFI子類命令以實現對U盤邏輯扇區讀、寫等操作的驅動程序;在U盤上采用目前主流操作系統(Windows,Linux等)所支持的FAT32文件格式,實現了文件的讀寫等API函數,并在此基礎上按文件系統的實現層次對其進行設計與優化,實現了起重機運行數據的可靠存儲;最后對課題研究做了總結。
上傳時間: 2013-07-09
上傳用戶:縹緲
電動助力轉向系統(EPS)是集節能、環保、安全為一體的前沿技術,是未來車輛轉向系統的發展方向。本文研究了電動助力轉向系統的構成和工作原理,自主研發設計了一套電動助力轉向控制系統,并進行實車試驗。 控制系統中采用了基于ARM7TDMI—S內核的高性能芯片LPC2131芯片(EasyARM2131開發板)進行控制器設計,分析和選擇了系統的控制策略,完成了控制器的硬件和軟件設計。系統的控制策略中采用了折線改進型助力曲線助力方式和模糊與數字PID相結合的控制方法,并進行相關補償控制的分析;硬件設計過程中采用了抗干擾技術進行優化設計,完成了信號采集和處理電路、電機驅動電路、電源電路以及故障診斷等電路設計;軟件設計采用了結構化的沒計思想,完成了包括控制系統主程序、A/D采集子程序、車速和發動機信號的采集子程序、電機PWM控制驅動子程序以及故障診斷和信息顯示子程序的設計,并在扭矩信號處理程序中應用容錯技術進行了軟件冗余優化設計。 本文對自主開發設計的EPS控制系統進行了實車試驗和結果分析,試驗結果表明,本文所設計的基于ARM的汽車電動助力轉向控制系統在轉向輕便性、穩定性和可靠性等方面性能良好,完全滿足設計要求。
上傳時間: 2013-07-21
上傳用戶:cuibaigao
PL3105芯片手冊PL3105芯片手冊PL3105芯片手冊
上傳時間: 2013-07-01
上傳用戶:hustfanenze
嵌入式圖像采集系統具有體積小、成本低、穩定性高等優點,在遠程監控、可視電話、計算機視覺、網絡會議等領域應用廣泛。為克服傳統基于單片機的圖像采集系統的種種不足,本文提出了一種新的解決方案,利用高速的ARM9嵌入式微處理器S3C2410A為硬件核心,搭配USB攝像頭,結合Linux構建了一套嵌入式的圖像采集系統。USB攝像頭有著容易購買、性價比高等優點,但長期以來將其直接應用于嵌入式系統卻很困難。隨著ARM微處理器的廣泛應用,嵌入式系統的性能得到了極大的提升。人們逐漸將操作系統引入其中,方便系統的管理和簡化應用程序的開發。Linux是一個免費開源的優秀操作系統,將其移植到嵌入式系統中能夠對系統進行高效地管理、極大地方便應用程序的開發。嵌入式的Linux操作系統繼承了Linux的優良特性,還有著節約資源,實時性強等優點。在本方案中以嵌入式Linux操作系統為基礎,借助其對USB、網絡等的強大支持能力來構建高度靈活的圖像采集系統。通過利用Linux操作系統內建的video4Linux對攝像頭進行編程,實現了將USB攝像頭采集到的視頻數據進行顯示和存為圖片的功能。本文中具體講述了嵌入式的軟硬件平臺的構建,USB攝像頭的驅動開發,圖像采集應用程序的實現等。本文提出的嵌入式圖像采集方案適用于市面上絕大多數流行的USB攝像頭,還能把得到的圖像通過以太網傳輸以實現遠程的監控。這套方案利用應用程序編程接口video4linux所提供的數據結構、應用函數等,實現了在Linux環境下采集USB攝像頭圖像數據的功能,并運用嵌入式的GUI開發工具Qt/Embedded來編寫最終的應用程序實現了美觀的用戶界面。充分運用Linux操作系統和其工具的強大功能來實現圖像采集,對基于Linux內核的后續圖像應用開發具有實用意義。本系統完全基于開放的平臺和模塊化的實現方法,具有良好的可移植性,可方便地進行各種擴展。這種方案所實現的圖像采集系統成本低,靈活性高,性能好,是一種優良的解決方案。本文詳細介紹了這種基于Linux系統和S3C2410A平臺的嵌入式圖像采集系統。
上傳時間: 2013-04-24
上傳用戶:再見大盤雞
隨著計算機技術的飛速發展,嵌入式系統在人們的生產生活中發揮著越來越重要的作用。近年來,基于ARM處理器和μC/OS-II操作系統的嵌入式技術已經成為當前嵌入式領域的研究熱點之一。 論文主要研究基于ARM7處理器和μC/OS-II操作系統的嵌入式測控平臺架構,為測控系統開發提供一個方便功能擴展的軟硬件環境。在此基礎上,以加速度計為對象,利用嵌入式系統的豐富資源,完成對其內部溫度及加速度信號的采集實例。硬件設計分為核心系統設計和數據采集控制子系統設計兩部分。核心系統主要包括控制核心S3C44BOX模塊、存儲器模塊、調試接口模塊、液晶顯示模塊以及數控鍵盤模塊等。完成了母板的設計與驗證,并預留多種接口,增強了可擴展性。采集控制子系統作為數據采集及控制機構,主要由A/D轉換芯片完成和串行通信模塊,用來接收傳感器傳輸的數據,經ARM處理器分析處理后,通過串行通訊方式與下位機通信。由于有多個下位系統,平臺設計擴展了8路帶高速緩沖的異步串行通信模塊。最后,對各硬件模塊進行總體調試,并對調試結果進行了分析。 調試結果表明,該硬件平臺不僅響應速度快、成本低、可靠性好,而且具有良好的可移植性和可裁剪性,便于根據實際需求進行功能擴展和裁剪,達到了預期的設計目標。
上傳時間: 2013-07-26
上傳用戶:zhqzal1014
U盤主控芯片SSS6691制作USB-CDROM教程
上傳時間: 2013-06-06
上傳用戶:alan-ee