基于STM32、STM8處理器,設計完成了萬能試驗機的多個功能模塊。為了提高小信號的采集精度與速度,用多處理器設計了一種混合式的鎖相放大器,并運用數字處理進行進一步處理,具有很高的性價比。在位移信號采集中,運用STM8S實現了低成本的設計。實驗表明,本系統在速度與精度上滿足萬能試驗機要求,總體性價比高。
上傳時間: 2013-12-26
上傳用戶:lili123
PCB LAYOUT 術語解釋(TERMS)1. COMPONENT SIDE(零件面、正面)︰大多數零件放置之面。2. SOLDER SIDE(焊錫面、反面)。3. SOLDER MASK(止焊膜面)︰通常指Solder Mask Open 之意。4. TOP PAD︰在零件面上所設計之零件腳PAD,不管是否鑽孔、電鍍。5. BOTTOM PAD:在銲錫面上所設計之零件腳PAD,不管是否鑽孔、電鍍。6. POSITIVE LAYER:單、雙層板之各層線路;多層板之上、下兩層線路及內層走線皆屬之。7. NEGATIVE LAYER:通常指多層板之電源層。8. INNER PAD:多層板之POSITIVE LAYER 內層PAD。9. ANTI-PAD:多層板之NEGATIVE LAYER 上所使用之絕緣範圍,不與零件腳相接。10. THERMAL PAD:多層板內NEGATIVE LAYER 上必須零件腳時所使用之PAD,一般稱為散熱孔或導通孔。11. PAD (銲墊):除了SMD PAD 外,其他PAD 之TOP PAD、BOTTOM PAD 及INNER PAD 之形狀大小皆應相同。12. Moat : 不同信號的 Power& GND plane 之間的分隔線13. Grid : 佈線時的走線格點2. Test Point : ATE 測試點供工廠ICT 測試治具使用ICT 測試點 LAYOUT 注意事項:PCB 的每條TRACE 都要有一個作為測試用之TEST PAD(測試點),其原則如下:1. 一般測試點大小均為30-35mil,元件分布較密時,測試點最小可至30mil.測試點與元件PAD 的距離最小為40mil。2. 測試點與測試點間的間距最小為50-75mil,一般使用75mil。密度高時可使用50mil,3. 測試點必須均勻分佈於PCB 上,避免測試時造成板面受力不均。4. 多層板必須透過貫穿孔(VIA)將測試點留於錫爐著錫面上(Solder Side)。5. 測試點必需放至於Bottom Layer6. 輸出test point report(.asc 檔案powerpcb v3.5)供廠商分析可測率7. 測試點設置處:Setuppadsstacks
上傳時間: 2013-10-22
上傳用戶:pei5
移相控制的全橋PWM變換器是最常用的中大功率DC/DC變換電路拓撲形式之一。移相PWM控制方式利用開關管的結電容和高頻變壓器的漏電感或原邊串聯電感作為諧振元件,使開關管能進行零電壓開通和關斷,從而有效地降低了電路的開關損耗和開關噪聲,減少了器件開關過程中產生的電磁干擾,為變換器提高開關頻率、提高效率、減小尺寸及減輕質量提供了良好的條件。然而,傳統的移相全橋變換器的輸出整流二極管存在反向恢復過程,會引起寄生振蕩,二極管上存在很高的尖峰電壓,需增加阻容吸收回路進行抑制,文獻提出了兩種帶箝位二極管的拓撲,可以很好地抑制寄生振蕩。本文采取文獻提出的拓撲結構,設計了一臺280 W移相全橋軟開關DC/DC變換器,該變換器輸入電壓為194~310 V,輸出電壓為76V。
上傳時間: 2014-08-30
上傳用戶:thing20
采用CD4046和AD630設計了一個雙相位鎖相放大器,并進行了實驗驗證,實驗驗證結果表明,該放大器可以測量1 mA以下的交流電流,靈敏度為20 mV/mA,精度0.05%,是一種高精度、實用型鎖相放大電路。
上傳時間: 2013-12-08
上傳用戶:ming52900
文章闡述了零電壓開關技術在移相全橋變換器中的應用, 提出了一種改進型的零電壓零電流全橋移相開關電源, 對電路的工作原理、工作模式作了具體分析, 主要器件的參數選擇作了設計, 并給出了由控制芯片UC3875 構成的3KW 實用高頻開關電源。
上傳時間: 2013-11-18
上傳用戶:zhanditian
高壓變頻器是指輸入電源電壓在3~10kV的大功率變頻器。由于其功率大、電壓等級高,所以對其輸入諧波、功率因數等要求很高。采用移相變壓器實現高壓變頻器的多重化整流,可使高壓變頻器的輸入諧波減小,功率因數提高。對容量為630kVA, 36脈波移相變壓器的電流、匝數參數進行設計,并對多重化整流電路進行諧波和仿真分析,為工程實踐提供依據。
上傳時間: 2013-11-22
上傳用戶:lunshaomo
為拓展單相光伏并網無功補償功能,實現單相并網系統無功和諧波電流的精確檢測和補償,提出一種改進的新型瞬時無功與諧波電流檢測及補償方法。該方法以瞬時無功理論為基礎,推導出單相并網逆變器瞬時無功控制規律,可以簡便、快速地分離所需電流分量;并結合無差拍理論,給出基于無差拍控制的單相并網逆變器的脈寬調制(PWM) 算法,可以對瞬時諧波及無功電流進行補償。將該控制策略應用于單相光伏并網系統,使光伏并網系統除提供有功功率外,同時兼備無功與諧波補償功能,增強了光伏并網功能。
上傳時間: 2014-04-15
上傳用戶:yanyueshen
高功率因數、高效率、低噪音是電源裝置和用電設備普遍追求的品質。本文以單相有源功率因數校正控制器和高性能功率模塊的研制、開發為依托,對其從理論和應用開發兩個方面進行了較為全面的研究和討論。
上傳時間: 2014-01-22
上傳用戶:llwap
分析了對小功率光伏并網逆變器拓撲結構的要求,簡單介紹了幾種典型的并網逆變器的拓撲結構,指出了各個拓撲結構的優缺點、效率和適用場合。給出了一種利用軟開關技術的單相全橋并網逆變器的拓撲結構(DC/AC),分析了其工作過程,通過諧振可以實現主功率開關的零電壓開通和關斷,而且輔助開關和二極管都是零電流開通和關斷,大大減小了功率器件的開關損耗,提高了逆變器的效率。最后,介紹了開關器件的選擇問題
上傳時間: 2013-10-13
上傳用戶:royzhangsz
漏電保護器的工作原理:漏電保護器主要包括檢測元件(零序電流互感器)、中間環節(包括放大器、比較器、脫扣器等)、執行元件(主開關)以及試驗元件等幾個部分。三相四線制供電系統的漏電保護器工作原理示意圖。TA 為零序電流互感器,GF 為主開關,TL為主開關的分勵脫扣器線圈。在被保護電路工作正常,沒有發生漏電或觸電的情況下,由克希荷夫定律可知,通過TA 一次側的電流相量和等于零,即:這樣TA 的二次側不產生感應電動勢,漏電保護器不動作,系統保持正常供電。當被保護電路發生漏電或有人觸電時,由于漏電電流的存在,通過TA一次側各相電流的相量和不再等于零,產生了漏電電流Ik。在鐵心中出現了交變磁通。在交變磁通作用下,TL二次側線圈就有感應電動勢產生,此漏電信號經中間環節進行處理和比較,當達到預定值時,使主開關分勵脫扣器線圈TL 通電,驅動主開關GF 自動跳閘,切斷故障電路,從而實現保護。用于單相回路及三相三線制的漏電保護器的工作原理與此相同,不贅述。
上傳時間: 2013-10-19
上傳用戶:zhangjinzj