亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

電力計量芯片

  • s3c6410芯片資料

    s3c6410芯片資料 開發(fā)工程師必備

    標(biāo)簽: s3c6410 芯片資料

    上傳時間: 2013-06-12

    上傳用戶:moerwang

  • 基于ARM的TimeToCount輻射測量儀的研究

    隨著半導(dǎo)體工藝的飛速發(fā)展和芯片設(shè)計水平的不斷進步,ARM微處理器的性能得到大幅度地提高,同時其芯片的價格也在不斷下降,嵌入式系統(tǒng)以其獨有的優(yōu)勢,己經(jīng)廣泛地滲透到科學(xué)研究和日常生活的各個方面。 本文以ARM7 LPC2132處理器為核心,結(jié)合蓋革一彌勒計數(shù)管對Time-To-Count輻射測量方法進行研究。ARM結(jié)構(gòu)是基于精簡指令集計算機(RISC)原理而設(shè)計的,其指令集和相關(guān)的譯碼機制比復(fù)雜指令集計算機要簡單得多,使用一個小的、廉價的ARM微處理器就可實現(xiàn)很高的指令吞吐量和實時的中斷響應(yīng)?;贏RM7TDMI-S核的LPC2132微處理器,其工作頻率可達到60MHz,這對于Time-To-Count技術(shù)是非常有利的,而且利用LPC2132芯片的定時/計數(shù)器引腳捕獲功能,可以直接讀取TC中的計數(shù)值,也就是說不再需要調(diào)用中斷函數(shù)讀取TC值,從而大大降低了計數(shù)前雜質(zhì)時間。本文是在我?guī)熜謪诬姷摹禩ime-To-Count測量方法初步研究》基礎(chǔ)上,使用了高速的ARM芯片,對基于MCS-51的Time-To-Count輻射測量系統(tǒng)進行了改進,進一步論證了采用高速ARM處理器芯片可以極大的提高G-M計數(shù)器的測量范圍與測量精度。 首先,討論了傳統(tǒng)的蓋革-彌勒計數(shù)管探測射線強度的方法,并指出傳統(tǒng)的脈沖測量方法的不足。然后討論了什么是Time-To-Count測量方法,對Time-To-Count測量方法的理論基礎(chǔ)進行分析。指出Time-To-Count方法與傳統(tǒng)的脈沖計數(shù)方法的區(qū)別,以及采用Time-To-Count方法進行輻射測量的可行性。 接著,詳細(xì)論述基于ARM7 LPC2132處理器的Time-To-Count輻射測量儀的原理、功能、特點以及輻射測量儀的各部分接口電路設(shè)計及相關(guān)程序的編制。 最后得出結(jié)論,通過高速32位ARM處理器的使用,Time-To-Count輻射測量儀的精度和量程均得到很大的提高,對于Y射線總量測量,使用了ARM處理器的Time-To-Count輻射測量儀的量程約為20 u R/h到1R/h,數(shù)據(jù)線性程度也比以前的Time-To-CotJnt輻射測量儀要好。所以在使用Time-To-Count方法進行的輻射測量時,如何減少雜質(zhì)時間以及如何提高計數(shù)前時間的測量精度,是決定Time-To-Count輻射測量儀性能的關(guān)鍵因素。實驗用三只相同型號的J33G-M計數(shù)管分別作為探測元件,在100U R/h到lR/h的輻射場中進行試驗.每個測量點測量5次取平均,得出隨著照射量率的增大,輻射強度R的測量值偏小且與輻射真實值之間的誤差也隨之增大。如果將測量誤差限定在10%的范圍內(nèi),則此儀器的量程范圍為20 u R/h至1R/h,量程跨度近六個數(shù)量級。而用J33型G-M計數(shù)管作常規(guī)的脈沖測量,量程范圍約為50 u R/h到5000 u R/h,充分體現(xiàn)了運用Time-To-Count方法測量輻射強度的優(yōu)越性,也從另一個角度反應(yīng)了隨著計數(shù)前時間的逐漸減小,雜質(zhì)時間在其中的比重越來越大,對測量結(jié)果的影響也就越來越嚴(yán)重,盡可能的減小雜質(zhì)時間在Time-To-Count方法輻射測量特別是測量高強度輻射中是關(guān)鍵的。筆者用示波器測出此輻射儀器的雜質(zhì)時間約為6.5 u S,所以在計算定時器值的時候減去這個雜質(zhì)時間,可以增加計數(shù)前時間的精確度。通過實驗得出,在標(biāo)定儀器的K值時,應(yīng)該在照射量率較低的條件下行,而測得的計數(shù)前時間是否精確則需要在照射量率較高的條件下通過儀器標(biāo)定來檢驗。這是因為在照射量率較低時,計數(shù)前時間較大,雜質(zhì)時間對測量結(jié)果的影響不明顯,數(shù)據(jù)線斜率較穩(wěn)定,適宜于確定標(biāo)定系數(shù)K值,而在照射量率較高時,計數(shù)前時間很小,雜質(zhì)時間對測量結(jié)果的影響較大,可以明顯的在數(shù)據(jù)線上反映出來,從而可以很好的反應(yīng)出儀器的性能與量程。實驗證明了Time-To-Count測量方法中最為關(guān)鍵的環(huán)節(jié)就是如何對計數(shù)前時間進行精確測量。經(jīng)過對大量實驗數(shù)據(jù)的分析,得到計數(shù)前時間中的雜質(zhì)時間可分為硬件雜質(zhì)時間和軟件雜質(zhì)時間,并以軟件雜質(zhì)時間為主,通過對程序進行合理優(yōu)化,軟件雜質(zhì)時間可以通過程序的改進而減少,甚至可以用數(shù)學(xué)補償?shù)姆椒▉淼窒瑥亩梢缘玫奖容^精確的計數(shù)前時間,以此得到較精確的輻射強度值。對于本輻射儀,用戶可以選擇不同的工作模式來進行測量,當(dāng)輻射場較弱時,通常采用規(guī)定次數(shù)測量的方式,在輻射場較強時,應(yīng)該選用定時測量的方式。因為,當(dāng)輻射場較弱時,如果用規(guī)定次數(shù)測量的方式,會浪費很多時間來采集足夠的脈沖信號。當(dāng)輻射場較強時,由于輻射粒子很多,產(chǎn)生脈沖的頻率就很高,規(guī)定次數(shù)的測量會加大測量誤差,當(dāng)選用定時測量的方式時,由于時間的相對加長,所以記錄的粒子數(shù)就相對的增加,從而提高儀器的測量精度。通過調(diào)研國內(nèi)外先進核輻射測量儀器的發(fā)展現(xiàn)狀,了解到了目前最新的核輻射總量測量技術(shù)一Time-To-Count理論及其應(yīng)用情況。論證了該新技術(shù)的理論原理,根據(jù)此原理,結(jié)合高速處理器ARM7 LPC2132,對以G-計數(shù)管為探測元件的Time-To-Count輻射測量儀進行設(shè)計。論文以實驗的方法論證了Time-To-Count原理測量核輻射方法的科學(xué)性,該輻射儀的量程和精度均優(yōu)于以前以脈沖計數(shù)為基礎(chǔ)理論的MCS-51核輻射測量儀。該輻射儀具有量程寬、精度高、易操作、用戶界面友好等優(yōu)點。用戶可以定期的對儀器的標(biāo)定,來減小由于電子元件的老化對低儀器性能參數(shù)造成的影響,通過Time-To-Count測量方法的使用,可以極大拓寬G-M計數(shù)管的量程。就儀器中使用的J33型G-M計數(shù)管而言,G-M計數(shù)管廠家參考線性測量范圍約為50 u R/h到5000 u R/h,而用了Time-To-Count測量方法后,結(jié)合高速微處理器ARM7 LPC2132,此核輻射測量儀的量程為20 u R/h至1R/h。在允許的誤差范圍內(nèi),核輻射儀的量程比以前基于MCS-51的輻射儀提高了近200倍,而且精度也比傳統(tǒng)的脈沖計數(shù)方法要高,測量結(jié)果的線性程度也比傳統(tǒng)的方法要好。G-M計數(shù)管的使用壽命被大大延長。 綜上所述,本文取得了如下成果:對國內(nèi)外Time-To-Count方法的研究現(xiàn)狀進行分析,指出了Time-To-Count測量方法的基本原理,并對Time-T0-Count方法理論進行了分析,推導(dǎo)出了計數(shù)前時間和兩個相鄰輻射粒子時間間隔之間的關(guān)系,從數(shù)學(xué)的角度論證了Time-To-Count方法的科學(xué)性。詳細(xì)說明了基于ARM 7 LPC2132的Time-To-Count輻射測量儀的硬件設(shè)計、軟件編程的過程,通過高速微處理芯片LPC2132的使用,成功完成了對基于MCS-51單片機的Time-To-Count測量儀的改進。改進后的輻射儀器具有量程寬、精度高、易操作、用戶界面友好等特點。本論文根據(jù)實驗結(jié)果總結(jié)出了Time-To-Count技術(shù)中的幾點關(guān)鍵因素,如:處理器的頻率、計數(shù)前時間、雜質(zhì)時間、采樣次數(shù)和測量時間等,重點分析了雜質(zhì)時間的組成以及引入雜質(zhì)時間的主要因素等,對國內(nèi)核輻射測量儀的研究具有一定的指導(dǎo)意義。

    標(biāo)簽: TimeToCount ARM 輻射測量儀

    上傳時間: 2013-06-24

    上傳用戶:pinksun9

  • 基于ARM的嵌入式語音識別系統(tǒng)研究

    語音識別是通過識別和理解過程把人類的語音信號轉(zhuǎn)變?yōu)槲谋净蛎畹募夹g(shù)。近年來語音識別技術(shù)由于其重要性和研究難度成為研究的熱點。隨著嵌入式的發(fā)展,嵌入式語音識別技術(shù)成為語音識別領(lǐng)域發(fā)展的新的重要方向。 在此背景下,本課題進行基于ARM的嵌入式語音識別系統(tǒng)的研究。論文分別從理論分析、系統(tǒng)硬件平臺的總體設(shè)計、系統(tǒng)軟件的分析定制等方面,對語音識別在ARM上的應(yīng)用做了研究。 1、在理論上,詳細(xì)介紹了語音識別的發(fā)展歷史與研究現(xiàn)狀;具體闡述語音識別技術(shù)的基本原理和主要研究方法,并推導(dǎo)了語音識別技術(shù)中最常用到的兩種算法DTW和HMM的數(shù)學(xué)模型,為進一步的語音識別研究打下基礎(chǔ)。 2、在硬件平臺方面,本文分析設(shè)計了語音識別系統(tǒng)的總體方案,主要包括以下三部分:語音識別系統(tǒng)的控制部分、語音的輸入輸出部分以及語音程序的存儲部分;文中詳細(xì)介紹了各部分的作用以及它們之間的連接方式,此外根據(jù)實際需要,選擇確定了語音芯片等外圍電路芯片的型號并擴展了外圍電路。 3、在系統(tǒng)軟件選擇定制方面,不僅要求各部分自身功能完善,能夠滿足本課題的需求,而且要求各部分相互之間滿足一定的兼容性,即定制的系統(tǒng)具有穩(wěn)定性,可以有效的工作。考慮到以上的因素,本課題針對特定的語音識別系統(tǒng)的需求,對交叉編譯環(huán)境、U-boot、內(nèi)核、根文件系統(tǒng)等均進行了量身定制。最終選用Crosstool來制作專門編譯Linux-2.6.22.6的交叉編譯工具;選用比較穩(wěn)定的支持tftp下載的u-boot-1.2.0作為引導(dǎo)程序;選用Linux-2.6.22.6作為嵌入式操作系統(tǒng)內(nèi)核,并對其進行剪裁定制,特別是增加了UDA1341TS音頻驅(qū)動和網(wǎng)卡驅(qū)動部分;選用了帶有mdev功能的busybox-1.9.1來制作根文件系統(tǒng)。 在以上三方面的基礎(chǔ)上,本課題對語音識別程序系統(tǒng)進行了實驗研究。實驗包括音頻驅(qū)動、語音錄制、語音訓(xùn)練、語音識別程序的編譯以及語音識別等程序在ARM上的移植。 最后,本論文采用DTW模型,完成了語音模板的訓(xùn)練和語音識別的任務(wù)。經(jīng)過實驗測試,該系統(tǒng)有效完成了預(yù)期的語音識別任務(wù)。

    標(biāo)簽: ARM 嵌入式 語音識別 系統(tǒng)研究

    上傳時間: 2013-05-30

    上傳用戶:wsx123

  • DS12C887中文資料 (實時時鐘芯片)

    DS12C887 實時時鐘芯片功能豐富,可以用來直接代替IBM PC 上的時鐘日歷芯片DS12887,同時,它的管腳也和MC146818B、DS12887 相兼容。由于DS12C887 能夠自動產(chǎn)生世

    標(biāo)簽: C887 12C 887 DS

    上傳時間: 2013-06-20

    上傳用戶:hhkpj

  • 基于ARM的數(shù)據(jù)采集卡研制

    根據(jù)機械電子工程類專業(yè)測控實驗教學(xué)平臺數(shù)據(jù)采集的需要,在綜合考慮成本和性能基礎(chǔ)上,提出以為主處理芯片的數(shù)據(jù)采集卡設(shè)計方案。 該方案的主要特點是,使用基于ARM7TDMI內(nèi)核的,工作主頻最高可達44MHz;內(nèi)置高性能的ADC和DAC模塊,采樣速度最高可達1MSPS,采樣精度為12位;模擬信號輸入通道最多可達16路,模擬信號輸出通道最高可達4路;具有豐富的外設(shè)資源可以使用,GPIO口數(shù)目最高可達40個。 在設(shè)計中采用了模塊化思想,將系統(tǒng)分為四個功能模塊:主模塊的功能是控制ADC進行信號采集和DAC進行模擬信號輸出;模擬信號模塊的作用是對傳感器輸入信號和DAC輸出波形進行簡單的調(diào)理;數(shù)字信號模塊引出32路數(shù)字I/O口,可用于需要采集數(shù)字量的場合;JTAG模塊可進行程序的調(diào)試和下載,對于數(shù)據(jù)采集卡的二次開發(fā)有很大的作用。 在本數(shù)據(jù)采集卡上,嘗試進行了μC/OSⅡ操作系統(tǒng)的移植,成功實現(xiàn)了四個任務(wù)的管理。在實際應(yīng)用中,工作數(shù)小時仍可保持正常的運行。 為檢驗數(shù)據(jù)采集卡的串口通訊能力,利用LabVIEW程序讀取下位機串口發(fā)送的已采集到的數(shù)據(jù),進行波形圖繪制。 為檢驗本數(shù)據(jù)采集卡的ADC和DAC精度,設(shè)計實驗利用DAC輸出波形,并利用ADC將采集到的波形通過LabVIEW顯示,測量結(jié)果顯示兩者電壓值誤差均在可允許的3LSB(Least Significant Bit)范圍內(nèi),表明本數(shù)據(jù)采集卡已基本實現(xiàn)預(yù)期設(shè)計指標(biāo)。

    標(biāo)簽: ARM 數(shù)據(jù)采集卡

    上傳時間: 2013-04-24

    上傳用戶:bruce

  • MAX813L:低成本的微處理器保護電路芯片

    MAX813L:低成本的微處理器保護電路芯片:1、MAX813L 的引腳配置(如圖一和圖二所示):2、MAX813L 的應(yīng)用電路:⑴MAXIM 公司推薦的原始應(yīng)用圖例 ⑵

    標(biāo)簽: 813L MAX 813 微處理器

    上傳時間: 2013-04-24

    上傳用戶:shenlan

  • 基于ARM芯片的GPS接收機設(shè)計

    GPS以全天候、高精度、自動化、高效益等顯著特點,贏得廣大測繪工作者的信賴,而一體化GPS接收機更是具有全內(nèi)置、防水、耐寒以及操作方便、適用范圍廣等優(yōu)點,己經(jīng)廣泛應(yīng)用于控制測量和大地測量中。隨著全球定位系統(tǒng)的不斷改進,硬、軟件的不斷完善,應(yīng)用領(lǐng)域正在不斷地開拓,目前已遍及國民經(jīng)濟各種部門,并開始逐步深入人們的日常生活。 本文介紹了GPS系統(tǒng)的特點、工作原理、課題背景、國內(nèi)外相關(guān)產(chǎn)品的現(xiàn)狀以及發(fā)展趨勢,闡述了GPS接收機的設(shè)計原理。文章認(rèn)為,GPS接收機中的微處理器的性能直接影響整機的性能,相比較其它微處理器,ARM微處理器具有一些獨特的優(yōu)勢。文章了ARM系列微處理器尤其是ARM7微處理器的性能特點,并給出了利用ARM7微處理器LPC2138芯片和xc3s1000型FPGA設(shè)計GPS接收機的實際設(shè)計和調(diào)試方案,并對此方案進行了論證,同時給出了各個功能模塊的軟硬件實現(xiàn)過程,并對樣機進行了性能指標(biāo)測試。

    標(biāo)簽: ARM GPS 芯片 收機設(shè)計

    上傳時間: 2013-04-24

    上傳用戶:kakuki123

  • 基于DSP的高性能異步電機矢量控制系統(tǒng)設(shè)計.pdf

    作為交流異步電機控制的一種方式,矢量控制技術(shù)已成為高性能變頻調(diào)速系統(tǒng)的首選方案。矢量控制系統(tǒng)中,磁鏈的觀測精度直接影響到系統(tǒng)控制性能的好壞。在轉(zhuǎn)子磁鏈定向的矢量控制系統(tǒng)中,轉(zhuǎn)矩電流和勵磁電流能得到完全解耦[1]。一般而言,轉(zhuǎn)子磁鏈觀測有兩種方法:電流模型法和電壓模型法。磁鏈的電流模型觀測法中需要電機轉(zhuǎn)子時間常數(shù),而轉(zhuǎn)子時間常數(shù)易受溫度和磁飽和影響。為克服這些缺點,需要對電機的轉(zhuǎn)子參數(shù)進行實時觀測,但這樣將使得系統(tǒng)更加的復(fù)雜。磁鏈的電壓模型觀測法中不含轉(zhuǎn)子參數(shù),受電機參數(shù)變化的影響較小。矢量控制計算量大,要求具有一定的實時性,從而對控制芯片的運算速度提出了更高的要求。 本文介紹了一種異步電機矢量控制系統(tǒng)的設(shè)計方法,采用了電壓模型觀測器[2]對轉(zhuǎn)子磁鏈進行估計,針對積分環(huán)節(jié)的誤差積累和直流漂移問題,采用了一種帶飽和反饋環(huán)節(jié)的積分器[3]來代替電壓模型觀測器中的純積分環(huán)節(jié)。整個算法在tms320f2812 dsp芯片上實現(xiàn),運算速度快,保證了系統(tǒng)具有很好的實時性。

    標(biāo)簽: DSP 性能 異步電機

    上傳時間: 2013-04-24

    上傳用戶:jhksyghr

  • 基于DSP和IRMCK201的雙CPU交流位置伺服系統(tǒng).pdf

    由于永磁伺服電機具有轉(zhuǎn)子轉(zhuǎn)動慣量 小,響應(yīng)速度快,效率高,功率密度高,電機體積小,消除電刷而減少噪音和維護等其他電機難以比擬的優(yōu)點,在高性能位置伺服領(lǐng)域,尤其為伺服電機組成的伺服系統(tǒng)應(yīng)用越來越廣泛。 永磁無刷電機有兩種形式:方波式和正弦波式。本文主要研究以pmsm 為伺服電機的伺服系統(tǒng) 目前實現(xiàn)永磁同步電動機的控制主要采用dsp、dsp+fpga和dsp+asic三種途徑。而前兩種方式實現(xiàn)位置控制編程量較大,美國國際整流器公司針對高性能交流伺服驅(qū)動要求,基于fpga技術(shù)開發(fā)出了完整的閉環(huán)電流控制和速度控制的伺服系統(tǒng)單片解決方案—irmck201。本文就是基于這種數(shù)字運動控制芯片,設(shè)計了dsp和irmck201的交流伺服控制系統(tǒng)。該系統(tǒng)具有性能優(yōu)越,結(jié)構(gòu)簡單,編程任務(wù)小,開發(fā)周期短等優(yōu)點,對其他交流位置伺服控制系統(tǒng)也具有很好的推廣意義。

    標(biāo)簽: IRMCK DSP 201 CPU

    上傳時間: 2013-06-07

    上傳用戶:zgu489

  • 基于ARM和DSP的數(shù)控系統(tǒng)研究

    機械手是自動裝配生產(chǎn)線上必不可少的設(shè)備,它可以模擬人手臂的部分動作,按預(yù)定的程序、軌跡和要求,實現(xiàn)抓取、搬運和裝配等工作。在減輕人的勞動強度和提高裝配質(zhì)量和在惡劣環(huán)境下作業(yè)等方面,起到了積極的作用。嵌入式系統(tǒng)是近年來發(fā)展起來的以應(yīng)用為中心并且軟硬件可裁剪的實時系統(tǒng),它的特點是高度自動化,響應(yīng)速度快等,非常適合于要求實時的和多任務(wù)的場合。 本文分析了機械手控制系統(tǒng)的功能要求,研究設(shè)計了一種基于ARM和DSP的機械手?jǐn)?shù)控系統(tǒng)的方案。嵌入式ARM處理器,具有運行速度快、功耗低、程序設(shè)計靈活、外圍硬件資源豐富等優(yōu)點,但其很難在處理大數(shù)據(jù)量、復(fù)雜算法時保證系統(tǒng)的靈活性和實時性。DSP作為數(shù)字信號處理的核心器件,能夠?qū)崟r快速的完成控制算法運算,由于DSP普通輸入輸出口的高低電平變化周期最快只能到1微秒左右,不適合高速輸入輸出;FPGA芯片高速輸入輸出數(shù)據(jù),時間可縮短至幾十納秒。另外利用FPGA可以方便的實現(xiàn)各種接口的邏輯時序,豐富的接口使得該系統(tǒng)能夠方便的進行移植,擴展了該系統(tǒng)的應(yīng)用領(lǐng)域,從而提升了其性價比,通過ARM處理器和DSP以及FPGA技術(shù)的有機結(jié)合,發(fā)揮各自的優(yōu)勢,使系統(tǒng)具有程序設(shè)計靈活、以太網(wǎng)通信、大容量存儲、高速數(shù)據(jù)輸出、可移植等特點,既滿足高速機械手自動控制的要求,同時又具有一定的通用性。 通過本課題實踐表明,基于ARM和DSP構(gòu)建嵌入式數(shù)控系統(tǒng)的應(yīng)用方案全可行、合理,同傳統(tǒng)的人機交互系統(tǒng)設(shè)計相比,能大量地減輕研發(fā)任務(wù),提高發(fā)速度,能夠在短時間內(nèi)得到控制性能優(yōu)秀的數(shù)控系統(tǒng)。

    標(biāo)簽: ARM DSP 數(shù)控 系統(tǒng)研究

    上傳時間: 2013-06-11

    上傳用戶:康郎

主站蜘蛛池模板: 温州市| 潮安县| 宾川县| 额济纳旗| 永顺县| 广宗县| 英山县| 西乌| 元阳县| 高尔夫| 乐东| 阜康市| 大方县| 乌鲁木齐县| 靖西县| 临夏市| 衡山县| 方山县| 南丹县| 旺苍县| 革吉县| 东乡| 吴川市| 长宁县| 扶风县| 铜梁县| 辽宁省| 鲁山县| 邻水| 洛宁县| 皮山县| 开平市| 许昌县| 双峰县| 厦门市| 攀枝花市| 吉木乃县| 双城市| 云龙县| 甘孜| 闻喜县|