亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

電壓比較器

  • 基于FPGA的靜止圖像編碼器

    遙感圖像在人類生活和軍事領域的應用日益廣泛,適合各種要求的遙感圖像編碼技術具有重要的現實意義。基于小波變換的內嵌編碼技術已成為當前靜止圖像編碼領域的主流,其中就包括基于分層樹集合分割排序(Set Partitioning inHierarchical Trees,SPIHT)的內嵌編碼算法。這種算法具有碼流可隨機獲取以及良好的恢復圖像質量等特性,因此成為實際應用中首選算法。隨著對圖像編碼技術需求的不斷增長,尤其是在軍事應用領域如衛星偵察等方面,這種編碼算法亟待轉換為可應用的硬件編碼器。 在靜止圖像編碼領域,高性能的圖像編碼器設計一直是相關研究人員不懈追求的目標。本文針對靜止圖像編碼器的設計作了深入研究,并致力于高性能的圖像編碼算法實現結構的研究,提出了具有創新性的降低計算量、存儲量,提高壓縮性能的算法實現結構,并成功應用于圖像編碼硬件系統中。這個方案還支持壓縮比在線可調,即在不改變硬件框架的條件下可按用戶要求實現16倍到2倍的壓縮,以適應不同的應用需求。本文所做的工作包括了兩個部分。 1.一種基于行的實時提升小波變換實現結構:該結構同時處理行變換和列變換,并且在圖像邊界采用對稱擴展輸出邊界數據,使得圖像小波變換時間與傳統的小波變換相比提高了將近2.6倍,提高了硬件系統的實時性。該結構還合理地利用和調度內部緩沖器,不需要外部緩沖器,大大降低了硬件系統對存儲器的要求。 2.一種采用左遍歷的比特平面并行SPIHT編碼結構:在該編碼結構中,空間定位生成樹采用深度優先遍歷方式,比特平面同時處理極大地提高了編碼速度。

    標簽: FPGA 圖像 編碼器

    上傳時間: 2013-06-17

    上傳用戶:abc123456.

  • 基于FPGA的數字下變頻器

    本文設計和實現了基于FPGA的數字下變頻器DDC,用于寬帶數字中頻軟件無線電接收機中。采用自上向下的模塊化設計方法,將DDC的功能劃分為基本單元,實現這些功能模塊并組成模塊庫。在具體應用時,優化配置各個模塊來滿足具體無線通信系統性能的要求。這樣做比傳統ASIC數字下變頻器具有更好的可編程性和靈活性,從而滿足不同的工程設計需求。 首先闡述了軟件無線電中關鍵的數字信號處理技術,包括中頻處理中的下變頻技術、抽取技術以及帶通采樣技術。利用MATLAB的Simulink完成了對系統的設計與仿真,驗證了設計的正確性。之后用QuartusII進行了基于FPGA抽取濾波器和NCO等關鍵模塊的設計,編譯后進行了時序仿真,最后在PCB板上實現了實際電路并應用于工程項目中。

    標簽: FPGA 數字下變頻

    上傳時間: 2013-08-05

    上傳用戶:lishuoshi1996

  • 基于FPGA的無線信道仿真器設計與實現

    隨著人們對無線通信需求和質量的要求越來越高,無線通信設備的研發也變得越來越復雜,系統測試在整個設備研發過程中所占的比重也越來越大。為了能夠盡快縮短研發周期,測試人員需要在實驗室模擬出無線信道的各種傳播特性,以便對所設計的系統進行調試與測試。無線信道仿真器是進行無線通信系統硬件調試與測試不可或缺的儀器之一。 本文設計的無線信道仿真器是以Clarke信道模型為參考,采用基于Jakes模型的改進算法,使用Altera公司的StratixⅡ EP2S180模擬實現了頻率選擇性衰落信道。信道仿真器實現了四根天線數據的上行接收,每根天線由八條可分辨路徑,每條可分辨路徑由64個反射體構成,每根天線可分辨路徑和反射體的數目可以獨立配置。通過對每個反射體初始角度和初始相位的設置,并且保證反射體的角度和相位是均勻分布的隨機數,可以使得同一條路徑不同反射體之間的非相關特性,得到的多徑傳播信道是一個離散的廣義平穩非相關散射模型(WSSUS)。無線信道仿真器模擬了上行數據傳輸環境,上行數據由后臺產生后儲存在單板上的SDRAM中。啟動測試之后,上行數據在CPU的控制下通過信道仿真器,然后送達基帶處理板解調,最后測試數據的誤碼率和誤塊率,從而分析基站的上行接收性能。 首先,本文研究了3GPP TS 25.141協議中對通信設備測試的要求和無線信道自身的特點,完成了對無線信道仿真器系統設計方案的吸收和修改。 其次,針對FPGA內部資源結構,研究了信道仿真器FPGA實現過程中的困難和資源的消耗,進行了模塊劃分。主要完成了時延模塊、瑞利衰落模塊、背板接口模塊等的RTL級代碼的開發、仿真、綜合和板上調試;完成了FPGA和后臺軟件的聯合調試;完成了兩天線到四天線的改版工作,使FPGA內部的工作頻率翻了一倍,大幅降低了FPGA資源的消耗。 最后,在完成無線信道仿真器的硬件設計之后,對無線信道仿真器的測試根據3GPP TS 25.141 V6.13.0協議中的要求進行,即在數據誤塊率(BLER)一定的情況下,對不同信道傳播環境和不同傳輸業務下的信噪比(Eb/No)進行測試,單天線和多天線的測試結果符合協議中規定的信噪比(Eb/No)的要求。

    標簽: FPGA 無線信道 仿真器

    上傳時間: 2013-04-24

    上傳用戶:小楊高1

  • 無線電中自適應調制解調器的FPGA實現

    隨著無線通信技術的不斷發展,人們對移動通信及寬帶無線接入業務需求的不斷增長,無線頻譜資源顯得日益匱乏。因此,如何提高頻譜利用率,一直以來就是無線通信領域研究的主要任務。認知無線電的提出成為當下解決頻譜資源稀缺的一個有效方法。而認知無線電的特性要求認知無線系統必須具備一個可重構的自適應調制解調器。因此,對于認知無線電平臺中自適應可重構調制解調器的深入研究具有重大的意義。    軟件無線電是實現認知無線電的理想平臺。本文首先闡述了軟件無線電的基本工作原理及關鍵技術,對多速率信號處理中的內插和抽取、帶通采樣、數字下變頻、濾波等技術進行了分析與探討,為設計自適應可重構調制解調器的設計提供了理論基礎。然后介紹了認知無線電系統的構成和基本工作方式,接著重點研究了其中通信模塊的FPGA實現。在通信模塊的實現中,研究了基于認知無線電的BPSK、π/4 DQPSK、8PSK及16QAM調制解調技術,簡要論述了他們的基本概念和原理,并給出了設計方案。接著按信號流程逐一介紹了各個功能模塊在DSP+FPGA硬件平臺上的實現,并對得到的數據進行了分析,給出了性能測試結果。在此基礎上,結合認知無線電系統的要求,提出了可變調制方式,可變傳輸帶寬的自適應可重構調制解調器的設計方案,并對其中一些關鍵模塊的硬件實現給出了分析,同時給出了收端波特率識別的策略。最后,論文提出了一些新的自適應技術,如波特率估計、信噪比估計等,并給出了應用這些技術的自適應調制解調器的改進方案。

    標簽: FPGA 無線 調制解調器

    上傳時間: 2013-06-17

    上傳用戶:alan-ee

  • 過采樣法提高A_D分辨率和信噪比

    介紹一種簡便的方法, 只用軟件就可以將轉換器位數提高, 并且還能同時提高采樣系統的信噪比。通過實際驗證, 證明該方法是成功的。

    標簽: A_D 過采樣 分辨率 信噪比

    上傳時間: 2013-11-11

    上傳用戶:zhenyushaw

  • 基于FPGA的全新數字化PCM中頻解調器設計

    為了對中頻PCM信號進行直接解調,提出一種全新的數字化PCM中頻解調器的設計方法。在實現過程中,采用大規模的FPGA芯片對位幀同步器進行了融合,便于設備的集成化和小型化。這種新型的中頻解調器比傳統的基帶解調器具有硬件成本低和誤碼率低等優點。

    標簽: FPGA PCM 數字化 中頻

    上傳時間: 2013-12-20

    上傳用戶:jiangxiansheng

  • ADC模數轉換器有效位計算

    將模擬信號轉換為數字信號后再進行處理,是當前信號處理普遍使用的方法,模數轉換器(ADC)就是將模擬信號轉換為數字信號的器件,所以計算其有效轉換位數對系統性能評估就顯得尤為重要。文中結合項目工程實踐,討論了ADC有效轉換位數的兩種測試方法:噪聲測試法和信噪比測試法,并對兩種方法進行了仿真與分析。

    標簽: ADC 模數轉換器 計算

    上傳時間: 2013-12-17

    上傳用戶:1184599859

  • 放大器及數據轉換器選擇指南

    德州儀器(TI)通過多種不同的處理工藝提供了寬范圍的運算放大器產品,其類型包括了高精度、微功耗、低電壓、高電壓、高速以及軌至軌。TI還開發了業界最大的低功耗及低電壓運算放大器產品選集,其設計特性可滿足寬范圍的多種應用。為使您的選擇流程更為輕松,我們提供了一個交互式的在線運算放大器參數搜索引擎——amplifier.ti.com/search,可供您鏈接至各種不同規格的運算放大器。設計考慮因素為某項應用選擇最佳的運算放大器所要考慮的因素涉及到多個相關聯的需求。為此,設計人員必須經常權衡彼此矛盾的尺寸、成本、性能等指標因素。即使是資歷最老的工程師也可能會為此而苦惱,但您大可不必如此。緊記以下的幾點,您將會發現選擇范圍將很快的縮小至可掌控的少數幾個。電源電壓(VS)——選擇表中包括了低電壓(最小值低于2.7V)及寬電壓范圍(最小值高于5V)的部分。其余運放的選擇類型(例如精密),可通過快速查驗供電范圍欄來適當選擇。當采用單電源供電時,應用可能需要具有軌至軌(rail-to-rail)性能,并考慮精度相關的參數。精度——主要與輸入偏移電壓(VOS)相關,并分別考慮隨溫度漂移、電源抑制比(PSRR)以及共模抑制比(CMRR)的變化。精密(precision)一般用于描述具有低輸入偏置電壓及低輸入偏置電壓溫度漂移的運算放大器。微小信號需要高精度的運算放大器,例如熱電偶及其它低電平的傳感器。高增益或多級電路則有可能需求低偏置電壓。

    標簽: 放大器 數據轉換器 選擇指南

    上傳時間: 2013-11-25

    上傳用戶:1966649934

  • 磁芯電感器的諧波失真分析

    磁芯電感器的諧波失真分析 摘  要:簡述了改進鐵氧體軟磁材料比損耗系數和磁滯常數ηB,從而降低總諧波失真THD的歷史過程,分析了諸多因數對諧波測量的影響,提出了磁心性能的調控方向。 關鍵詞:比損耗系數, 磁滯常數ηB ,直流偏置特性DC-Bias,總諧波失真THD  Analysis on THD of the fer rite co res u se d i n i nductancShi Yan Nanjing Finemag Technology Co. Ltd., Nanjing 210033   Abstract:    Histrory of decreasing THD by improving the ratio loss coefficient and hysteresis constant of soft magnetic ferrite is briefly narrated. The effect of many factors which affect the harmonic wave testing is analysed. The way of improving the performance of ferrite cores is put forward.  Key words: ratio loss coefficient,hysteresis constant,DC-Bias,THD  近年來,變壓器生產廠家和軟磁鐵氧體生產廠家,在電感器和變壓器產品的總諧波失真指標控制上,進行了深入的探討和廣泛的合作,逐步弄清了一些似是而非的問題。從工藝技術上采取了不少有效措施,促進了質量問題的迅速解決。本文將就此熱門話題作一些粗淺探討。  一、 歷史回顧 總諧波失真(Total harmonic distortion) ,簡稱THD,并不是什么新的概念,早在幾十年前的載波通信技術中就已有嚴格要求<1>。1978年郵電部公布的標準YD/Z17-78“載波用鐵氧體罐形磁心”中,規定了高μQ材料制作的無中心柱配對罐形磁心詳細的測試電路和方法。如圖一電路所示,利用LC組成的150KHz低通濾波器在高電平輸入的情況下測量磁心產生的非線性失真。這種相對比較的實用方法,專用于無中心柱配對罐形磁心的諧波衰耗測試。 這種磁心主要用于載波電報、電話設備的遙測振蕩器和線路放大器系統,其非線性失真有很嚴格的要求。  圖中  ZD   —— QF867 型阻容式載頻振蕩器,輸出阻抗 150Ω, Ld47 —— 47KHz 低通濾波器,阻抗 150Ω,阻帶衰耗大于61dB,       Lg88 ——并聯高低通濾波器,阻抗 150Ω,三次諧波衰耗大于61dB Ld88 ——并聯高低通濾波器,阻抗 150Ω,三次諧波衰耗大于61dB FD   —— 30~50KHz 放大器, 阻抗 150Ω, 增益不小于 43 dB,三次諧波衰耗b3(0)≥91 dB, DP  —— Qp373 選頻電平表,輸入高阻抗, L ——被測無心罐形磁心及線圈, C  ——聚苯乙烯薄膜電容器CMO-100V-707APF±0.5%,二只。 測量時,所配用線圈應用絲包銅電磁線SQJ9×0.12(JB661-75)在直徑為16.1mm的線架上繞制 120 匝, (線架為一格) , 其空心電感值為 318μH(誤差1%) 被測磁心配對安裝好后,先調節振蕩器頻率為 36.6~40KHz,  使輸出電平值為+17.4 dB, 即選頻表在 22′端子測得的主波電平 (P2)為+17.4 dB,然后在33′端子處測得輸出的三次諧波電平(P3), 則三次諧波衰耗值為:b3(+2)= P2+S+ P3 式中:S 為放大器增益dB 從以往的資料引證, 就可以發現諧波失真的測量是一項很精細的工作,其中測量系統的高、低通濾波器,信號源和放大器本身的三次諧波衰耗控制很嚴,阻抗必須匹配,薄膜電容器的非線性也有相應要求。濾波器的電感全由不帶任何磁介質的大空心線圈繞成,以保證本身的“潔凈” ,不至于造成對磁心分選的誤判。 為了滿足多路通信整機的小型化和穩定性要求, 必須生產低損耗高穩定磁心。上世紀 70 年代初,1409 所和四機部、郵電部各廠,從工藝上改變了推板空氣窯燒結,出窯后經真空罐冷卻的落后方式,改用真空爐,并控制燒結、冷卻氣氛。技術上采用共沉淀法攻關試制出了μQ乘積 60 萬和 100 萬的低損耗高穩定材料,在此基礎上,還實現了高μ7000~10000材料的突破,從而大大縮短了與國外企業的技術差異。當時正處于通信技術由FDM(頻率劃分調制)向PCM(脈沖編碼調制) 轉換時期, 日本人明石雅夫發表了μQ乘積125 萬為 0.8×10 ,100KHz)的超優鐵氧體材料<3>,其磁滯系數降為優鐵

    標簽: 磁芯 電感器 諧波失真

    上傳時間: 2014-12-24

    上傳用戶:7891

  • 纖巧型同步升壓轉換器在700mV條件下啟動

    由於性電池容易購買而且價格相對便宜,因此它為人們帶來了方便,並且成為了便攜式儀器以及室外消遣娛樂設備的電源選擇。

    標簽: 700 mV 同步升壓 轉換器

    上傳時間: 2014-01-07

    上傳用戶:xiaoyaa

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美mv日韩mv国产网站| 欧美日韩蜜桃| 欧美午夜精品久久久久免费视 | 国产精品毛片| 亚洲精品视频免费| 亚洲小视频在线| 国产精品看片你懂得| 亚洲精品免费在线观看| 国产精品久久久爽爽爽麻豆色哟哟| 欧美在线视频观看| 影音先锋日韩有码| 一区二区欧美激情| 欧美国产在线电影| 在线播放日韩专区| 欧美影院午夜播放| 国产精品v片在线观看不卡| 亚洲精品国产无天堂网2021| 久久综合九色九九| 精品av久久久久电影| 欧美一区二区黄| 欧美午夜电影网| 亚洲乱码久久| 欧美精品在线看| 亚洲日韩中文字幕在线播放| 久久婷婷综合激情| 一区国产精品| 久久视频在线看| 激情五月综合色婷婷一区二区| 亚洲男女自偷自拍| 欧美三级视频在线观看| 一个人看的www久久| 欧美区国产区| 亚洲一区二区高清| 国产精品夜夜夜| 欧美中文在线字幕| 国内精品久久久久影院优| 久久人人爽人人爽爽久久| 在线观看亚洲精品| 欧美—级a级欧美特级ar全黄| 亚洲国产日韩在线一区模特| 毛片基地黄久久久久久天堂| 亚洲欧洲视频在线| 欧美日韩综合不卡| 亚洲一区二区成人在线观看| 国产精品久久久久免费a∨大胸 | 国产精品高精视频免费| 一本色道久久99精品综合| 国产精品久久久久久久久借妻| 亚洲欧美日韩一区二区三区在线 | 欧美激情精品| 一区二区高清| 国产情侣一区| 欧美aaaaaaaa牛牛影院| 亚洲免费观看| 国产日韩欧美黄色| 久久免费视频在线| 一本色道久久综合狠狠躁篇怎么玩 | 久久国产欧美日韩精品| 狠狠色丁香婷婷综合久久片| 欧美高清在线一区| 午夜在线电影亚洲一区| 樱桃成人精品视频在线播放| 欧美成人69av| 欧美一二三区在线观看| 亚洲国产欧美国产综合一区| 欧美日韩精品一区二区三区| 久久久国产91| 宅男噜噜噜66国产日韩在线观看| 国产亚洲美州欧州综合国| 欧美不卡激情三级在线观看| 午夜免费日韩视频| 亚洲卡通欧美制服中文| 国产欧美在线播放| 欧美日韩不卡合集视频| 久久免费观看视频| 午夜精品999| 在线天堂一区av电影| 亚洲第一免费播放区| 国产色综合久久| 欧美无砖砖区免费| 欧美高清在线视频观看不卡| 久久精品国产v日韩v亚洲| 亚洲一区国产视频| 一区二区欧美亚洲| 亚洲精品资源美女情侣酒店| 黄色影院成人| 国产日本亚洲高清| 国产精品久久久久影院色老大| 欧美大胆成人| 女人天堂亚洲aⅴ在线观看| 欧美在线视频免费播放| 午夜精品久久久99热福利| av不卡在线| 亚洲欧洲视频在线| 尹人成人综合网| 影音先锋日韩资源| 伊甸园精品99久久久久久| 国产日韩欧美一区在线 | 亚洲视频第一页| 在线视频欧美日韩| 中日韩高清电影网| 亚洲视频在线观看三级| 9久re热视频在线精品| 亚洲精品国产日韩| 亚洲伦理久久| 亚洲精品视频在线观看网站| 最新亚洲一区| 亚洲理伦在线| 一区二区高清在线| 亚洲亚洲精品三区日韩精品在线视频 | 夜夜嗨av色一区二区不卡| 狠狠色丁香婷综合久久| 国产日韩在线亚洲字幕中文| 亚洲欧美日韩综合国产aⅴ| 99精品国产高清一区二区 | 亚洲资源av| 亚洲一二三四久久| 黄色工厂这里只有精品| 在线欧美日韩| 亚洲精品乱码久久久久久蜜桃91| 亚洲欧洲精品一区二区三区波多野1战4| 激情久久一区| 日韩一级欧洲| 欧美一区永久视频免费观看| 久久av资源网| 欧美成人a视频| 国产精品毛片高清在线完整版| 国产日韩综合一区二区性色av| 国内外成人免费视频| 亚洲国产天堂久久综合| 亚洲一区二区三区在线观看视频| 欧美一区二区三区视频在线观看 | 一本色道久久综合亚洲91| 亚洲性视频网站| 久久中文字幕一区| 国产精品夫妻自拍| 亚洲人午夜精品免费| 亚洲欧美日本另类| 欧美多人爱爱视频网站| 国产精品视频男人的天堂| 在线欧美三区| 欧美一区二区在线视频| 欧美精品麻豆| 激情综合亚洲| 小黄鸭视频精品导航| 欧美日本视频在线| 国产日本亚洲高清| 夜夜嗨av一区二区三区中文字幕| 久久精品国产v日韩v亚洲| 欧美日韩综合另类| 91久久国产综合久久91精品网站| 欧美一区二区三区久久精品| 欧美精品综合| 在线观看一区视频| 午夜在线成人av| 国产精品国产自产拍高清av王其| 亚洲第一页中文字幕| 欧美在线视频播放| 国产精品久久一卡二卡| 亚洲激情六月丁香| 快射av在线播放一区| 国产亚洲福利社区一区| 亚洲欧美国产制服动漫| 国产精品成人国产乱一区| 99国产一区| 欧美三级视频在线播放| 亚洲美女精品久久| 欧美激情久久久| 日韩一二三区视频| 欧美日本二区| 99国产精品久久久久久久成人热| 蜜臀av性久久久久蜜臀aⅴ| 国产一区二区三区在线观看视频| 亚洲一区二区在线免费观看| 欧美午夜激情视频| 亚洲淫性视频| 国产精品中文在线| 午夜在线精品偷拍| 韩日欧美一区二区三区| 欧美理论电影在线观看| 国产精品一区二区视频| 免费不卡亚洲欧美| 欧美大香线蕉线伊人久久国产精品| 国产欧美精品久久| 欧美日韩情趣电影| 国产精品久久国产精品99gif| 亚洲精选视频免费看| 红杏aⅴ成人免费视频| 国产精品手机视频| 欧美精品一级| 久久久久青草大香线综合精品| 久久蜜桃资源一区二区老牛 | 欧美大片在线影院| 欧美亚洲综合久久| 中文一区在线| 妖精视频成人观看www| 亚洲国产成人91精品| 国产麻豆精品theporn| 欧美一区二区三区在线观看视频| 伊人久久男人天堂|