眾所周知,信息傳輸的核心問題是有效性和可靠性,調制解調技術的發展正是體現了這一思想。從最早的模擬調幅調頻技術的日益完善,到現在數字調制技術的廣泛運用,使得信息的傳輸更為有效和可靠。QAM調制作為一種新的調制技術,因其具有很高的頻帶利用率而得到了廣泛的應用。 本文對基于FPGA的16QAM調制解調進行了討論和研究。首先對16QAM調制解調原理進行了闡述,建立了16QAM調制解調系統的數學模型,然后通過分析提出了基于FPGA的16QAM調制解調系統的設計方案。最后編寫Verilog代碼實現了算法仿真。 FPGA芯片采用的是Altera公司的大規模集成電路芯片Cyclone系列的EPlC20F32417,并通過軟件編程對其進行了相關調試。文中詳細介紹了基帶成形濾波器、載波恢復和定時同步的基本原理及其設計方法。首先用Matlab對整個16QAM系統進行了軟件仿真;然后用硬件描述語言Verilog HDL在QuartusⅡ環境下完成了系統關鍵算法的編寫、行為仿真和綜合,最后詳細闡述了異步串口(UART)的FPGA實現,把我們編寫的Verilog程序下載到EPlC20F32417芯片上效果很好。
上傳時間: 2013-06-12
上傳用戶:q123321
本文以Turbo碼編譯碼器的FPGA實現為目標,對Turbo碼的編譯碼算法和用硬件語言將其實現進行了深入的研究。 首先,在理論上對Turbo碼的編譯碼原理進行了介紹,確定了Max-log-MAF算法的譯碼算法,結合CCSDS標準,在實現編碼器時,針對標準中給定的幀長、碼率與交織算法,以及偽隨機序列模塊與幀同步模塊,提出了相應解決方案;而在相應的譯碼器設計中,采用了FPGA設計中“自上而下”的設計方法,權衡硬件實現復雜度與處理時延等因素,優先考慮面積因素,提高元件的重復利用率和降低電路復雜度,來實現Turbo碼的Max-log-MAP算法譯碼。把整個系統分割成不同的功能模塊,分別闡述了實現過程。 然后,基于Verilog HDL 設計出12位固點數據的Turbo編譯碼器以及仿真驗證平臺,與用Matlab語言設計的相同指標的浮點數據譯碼器進行性能比較,得到該設計的功能驗證。 最后,研究了Tuxbo碼譯碼器幾項最新技術,如滑動窗譯碼,歸一化處理,停止迭代技術結合流水線電路設計,將改進后的譯碼器與先前設計的譯碼器分別在ISE開發環境中針對目標器件xilinx Virtex-Ⅱ500進行電路綜合,證實了這些改進技術能有效地提高譯碼器的吞吐量,減少譯碼時延和存儲器面積從而降低功耗。
上傳時間: 2013-04-24
上傳用戶:haohaoxuexi
《計算機組成原理》是計算機系的一門核心課程。但是它涉及的知識面非常廣,內容包括中央處理器、指令系統、存儲系統、總線和輸入輸出系統等方面,學生在學習該課程時,普遍覺得內容抽象難于理解。但借助于該計算機組成原理實驗系統,學生通過實驗環節,可以進一步融會貫通學習內容,掌握計算機各模塊的工作原理,相互關系的來龍去脈。 為了增強實驗系統的功能,提高系統的靈活性,降低實驗成本,我們采用FPGA芯片技術來徹底更新現有的計算器組成原理實驗平臺。該技術可根據用戶要求為芯片加載由VHDL語言所編寫出的不同的硬件邏輯,FPGA芯片具有重復編程能力,使得系統內硬件的功能可以像軟件一樣被編程,這種稱為“軟”硬件的全新系統設計概念,使實驗系統具有極強的靈活性和適應性。它不僅使該系統性能的改進和擴充變得十分簡易和方便,而且使學生自己設計不同的實驗變為可能。計算機組成原理實驗的最終目的是讓學生能夠設計CPU,但首先,學生必須知道CPU的各個功能部件是如何工作,以及相互之間是如何配合構成CPU的。因此,我們必須先設計出一個教學用的以FPGA芯片為核心的硬件平臺,然后在此基礎上開發出VHDL部件庫及主要邏輯功能,并設計出一套實驗。 本文重點研究了基于FPGA芯片的VHDL硬件系統,由于VHDL的高標準化和硬件描述能力,現代CPU的主要功能如計算,存儲,I/O操作等均可由VHDL來實現。同時設計實驗內容,包括時序電路的組成及控制原理實驗、八位運算器的組成及復合運算實驗、存儲器實驗、數據通路實驗、浮點運算器實驗、多流水線處理器實驗等,這些實驗形成一個相互關聯的系統。每個實驗先由教師講解原理及原理圖,學生根據教師提供的原理圖,自己用MAX+PLUSII完成電路輸入,學生實驗實際上是編寫VHDL,不需要寫得很復雜,只要能調用接口,然后將程序燒入平臺,這樣既不會讓學生花太多的時間在畫電路圖上,又能讓學生更好的理解每個部件的工作原理和工作過程。 論文首先研究分析了FPGA硬件實驗平臺,即實驗系統的硬件組成。系統采用FPGA-XC4010EPC84,62256CPLD以及其他外圍芯片(例如74LS244,74LS275)組成。根據不同的實驗要求,規劃不同實驗控制邏輯。用戶可選擇不同的實驗邏輯,通過把實驗邏輯下載到FPGA芯片中構成自己的實驗平臺。 其次,論文詳細的闡述了VHDL模塊化設計,如何運用VHDL技術來依次實現CPU的各個功能部件。VHDL語言作為一種國際標準化的硬件描述語言,自1987年獲得IEEE批準以來,經過了1993年和2001年兩次修改,至今已被眾多的國際知名電子設計自動化(EDA)工具研發商所采用,并隨同EDA設計工具一起廣泛地進入了數字系統設計與研發領域,目前已成為電子業界普遍接受的一種硬件設計技術。再次,論文針對實驗平臺中遇到的較為棘手的多流水線等問題,也進行了深入的闡述和剖析。學生需要什么樣的實驗條件,實驗內容及步驟才能了解當今CPU所采用的核心技術,才能掌握CPU的設計,運行原理。另外,本論文的背景是需要學生熟悉基本的VHDL知識或技能,因為實驗是在編寫VHDL代碼的前提下完成的。 本文在基于實驗室的環境下,基本上較為完整的實現了一個基于FPGA的實驗平臺方案。在此基礎上,進行了部分功能的測試和部分性能方面的分析。本論文的研究,為FPGA在實際系統中的應用提供研究思路和參考方案。論文的研究結果將對FPGA與VHDL標準的進一步發展具有重要的理論和現實意義。
上傳時間: 2013-04-24
上傳用戶:小強mmmm
隨著微電子技術和計算機技術的迅猛發展,尤其是現場可編程器件的出現,為滿足實時處理系統的要求,誕生了一種新穎靈活的技術——可重構技術。它采用實時電路重構技術,在運行時根據需要,動態改變系統的電路結構,從而使系統既有硬件優化所能達到的高速度和高效率,又能像軟件那樣靈活可變,易于升級,從而形成可重構系統。可重構系統的關鍵在于電路結構可以動態改變,這就需要有合適的可編程邏輯器件作為系統的核心部件來實現這一功能。 論文利用可重構技術和“FD-ARM7TDMLCSOC”實驗板的可編程資源實現了一個8位微程序控制的“實驗CPU”,將“實驗CPU”與實驗板上的ARMCPU構成雙內核CPU系統,并對雙內核CPU系統的工作方式和體系結構進行了初步研究。 首先,文章研究了8位微程序控制CPU的開發實現。通過設計實驗CPU的系統邏輯圖,來確定該CPU的指令系統,并給出指令的執行流程以及指令編碼。“實驗CPU”采用的是微程序控制器的方式來進行控制,因此進行了微程序控制器的設計,即微指令編碼的設計和微程序編碼的設計。為利用可編程資源實現該“實驗CPU”,需對“實驗CPU”進行VHDL描述。 其次,文章進行了“實驗CPU”綜合下載與開發。文章中使用“Synplicity733”作為綜合工具和“Fastchip3.0”作為開發工具。將“實驗CPU”的VHDL描述進行綜合以及下載,與實驗箱上的ARMCPU構成雙內核CPU,實現了基于可重構技術的雙內核CPU的系統。根據實驗板的具體環境,文章對雙內核CPU系統存在的關鍵問題,如“實驗CPU”的內存讀寫問題、微程序控制器的實現,以及“實驗CPU'’框架等進行了改進,并通過在開發工具中添加控制模塊和驅動程序來實現系統工作方式的控制。 最后,文章對雙核CPU系統進行了功能分析。經分析,該系統中兩個CPU內核均可正常運行指令、執行任務。利用實驗板上的ARMCPU監視用“實驗CPU”的工作情況,如模擬“實驗CPU”的內存,實現機器碼運行,通過串行口發送的指令來完成單步運行、連續運行、停止、“實驗CPU"指令文件傳送、“實驗CPU"內存修改、內存察看等工作,所有結果可顯示在超級終端上。該系統通過利用ARMCPU來監控可重構CPU,研究雙核CPU之間的通信,嘗試新的體系結構。
上傳時間: 2013-04-24
上傳用戶:royzhangsz
本文以直接頻率合成和偽隨機碼的設計與實現為中心,對擴頻通信的基本理論、信號源的總體結構、載波調制、濾波器設計等問題進行了深入的分析和研究,并給出了模塊的硬件實現方案。 首先介紹了FPGA技術的發展和應用,包括VHDL語言的基本語法結構和FPGA器件的開發設計流程等等。詳細地分析了各類頻率合成器的基礎上提出采用直接數字式頻率合成器(DDS)實現低相位噪聲、高分辨率、高精度和高穩定度的信號源。研究了測距偽隨機碼的原理,確定選用移位序列作為系統的擴頻碼序列,并選取了符合本系統使用的移位序列擴頻碼。分別給出并分析了相應的FPGA硬件實現電路。 對于載波調制這一關鍵技術,提出了采用二進制相移鍵控相位選擇法并相應作了硬件實現。分析與研究了射頻寬帶濾波器應具有的傳輸特性,通過分析巴特沃思濾波器、切比雪夫濾波器、橢圓濾波器和貝塞爾濾波器這幾種濾波器的頻譜特性,設計了發生器射頻寬帶濾波器。最后給出具體設計實現了的信號發生器的輸出波形。
上傳時間: 2013-04-24
上傳用戶:greethzhang
視頻運動目標檢測是數字視頻信號處理、分析應用的一個重要領域,在民用和軍事上有著廣泛的應用,實現可靠、快速的運動目標檢測系統有著非常重要的意義。 本文詳細介紹了基于FPGA的視頻運動目標檢測系統的軟硬件設計方法及其實現方案。首先介紹了視頻信號的分類和性質,在此基礎上,討論分析了當前三種主要的運動目標檢測算法的基本原理和優缺點;然后對運動目標檢測系統的硬件設計制定了詳細的方案,為系統的實現提供了穩定良好的硬件平臺;最后,在前面分析研究的基礎上,詳細介紹了系統的FPGA硬件實現過程。 本文通過對視頻運動目標檢測算法的分析研究,采用了一種改進的幀間差分算法,并結合系統任務,最終開發了一種基于Altera公司CYCLONE系列FPGA芯片的實時視頻運動目標檢測系統。采用FPGA實現系統設計,可提高系統的處理速度,同時具有良好的靈活性和適應性。實際應用表明,本文所設計的運動目標檢測系統能很好地檢測出運動目標,并具有較好的抗干擾能力。
上傳時間: 2013-04-24
上傳用戶:hustfanenze
本文設計和實現了基于FPGA的數字下變頻器DDC,用于寬帶數字中頻軟件無線電接收機中。采用自上向下的模塊化設計方法,將DDC的功能劃分為基本單元,實現這些功能模塊并組成模塊庫。在具體應用時,優化配置各個模塊來滿足具體無線通信系統性能的要求。這樣做比傳統ASIC數字下變頻器具有更好的可編程性和靈活性,從而滿足不同的工程設計需求。 首先闡述了軟件無線電中關鍵的數字信號處理技術,包括中頻處理中的下變頻技術、抽取技術以及帶通采樣技術。利用MATLAB的Simulink完成了對系統的設計與仿真,驗證了設計的正確性。之后用QuartusII進行了基于FPGA抽取濾波器和NCO等關鍵模塊的設計,編譯后進行了時序仿真,最后在PCB板上實現了實際電路并應用于工程項目中。
上傳時間: 2013-08-05
上傳用戶:lishuoshi1996
軟件無線電是無線電領域研究的熱點。現階段限于硬件的發展水平,大多采用寬帶中頻帶通采樣數字化結構,數字中頻技術就成為實現該結構的關鍵技術。目前FPGA器件在數字信號處理技術的實現方面發揮著越來越重要的作用。本文目的正是要把這兩者相結合,使數字中頻處理在FPGA中得到實現,滿足具體的應用要求。 首先,對軟件無線電體系和數字中頻處理結構進行了研究;其次,在信號采樣理論、多速率數字信號處理理論、濾波器設計理論、FPGA硬件數字算法等理論的基礎上,結合本文的應用需要,提出了適合于FPGA實現的數字化中頻處理的系統方案:采用多相結構來高效的實現抽取,并用FIR濾波器作為低通抗混疊濾波器來實現6倍抽取的抗混疊濾波。對系統進行了Matlab仿真,以驗證系統方案的可行性。再次,具體通過Vefilog編程在FPGA中硬件實現該數字中頻系統。其中包括混頻器模塊、抽取濾波器模塊、信號產生器模塊。 最后對該系統進行了軟件仿真和硬件功能驗證,結果表明數字中頻系統性能達到了設計要求。
上傳時間: 2013-07-26
上傳用戶:zhouli
無人機大氣數據的采集和處理在無人機中占有很重要的位置和作用,它是保障飛機安全飛行以及保證地面控制和操縱人員正確引導飛機、順利完成飛行任務的關鍵所在。在目前廣泛應用的無人機大氣數據測量系統中,多數采用單片機作為大氣數據處理計算機,但是單片機在高速數據采集和處理方面卻存在著抗干擾性差、速度慢等缺點,使測量系統的穩定性和實時性受到了很大的影響。 本文采用FPGA(Field Programmable Gate Array,現場可編程門陣列)芯片作為大氣數據處理器,以大氣數據中的氣壓高度為例,介紹了一種基于FPGA技術的無人機氣壓高度測量系統。由于該測量系統中的FPGA數據處理器具有可靠性高、速度快、邏輯功能強等特點,有效地解決了單片機在高速無人機大氣數據測量系統中處理速度較慢、實時性較差的問題。 論文首先介紹了FPGA的基本結構、工作原理、開發設計流程和FPGA編程所采用的VHDL硬件描述語言,還介紹了數字式大氣數據測量系統的基本組成和工作原理,并且詳細闡述了氣壓高度測量的原理和方法;然后提出了基于FPGA的無人機氣壓高度測量系統的整體設計,并對該測量系統各組成部分的硬件電路進行詳細的分析和設計;隨后論文又介紹了氣壓高度測量系統中FPGA的相關軟件設計,并就FPGA內部所設計的各功能模塊的作用、模塊內部結構和工作流程進行詳細的論述;最后使用Modelsim和QuartusII仿真軟件對程序進行功能和時序的仿真,以驗證FPGA內部各功能模塊和FPGA總體設計的正確性,并在所有仿真通過后將程序產生的配置文件下載到FPGA芯片中,在制作和安裝測量系統的電路板后對整個測量系統進行實際的測試,將測試結果與理論值比較并分析測量系統的誤差來源。 根據系統測試的結果,本文驗證了以FPGA芯片為核心的無人機氣壓高度測量系統的可行性,并對該測量系統提出了今后的進一步改進和完善的思路。
上傳時間: 2013-04-24
上傳用戶:cx111111
隨著各種非線性電力電子設備的大量應用,電網中的諧波污染日益嚴重。為了保證電力系統的安全經濟運行,保證電氣設備和用電人員的安全,治理電磁環境污染、維護綠色環境,研究實時、準確的電力諧波分析系統,對電網中的諧波進行實時檢測、分析和監控,都具有重要的理論和工程實際意義。 目前實際應用的電力諧波分析系統大多是以單片機為核心組成。單片機運行速度慢,實時性較差,不能滿足實際應用中對系統實時性越來越高的要求。另外,單片機的地址線和數據線位數較少,這使得由單片機構成的電力諧波分析系統外圍電路龐大,系統的可靠性和可維護性上都大打折扣。 本文首先研究了電力諧波的產生,危害及國內外研究現狀,對電力諧波檢測中常用的各種算法進行分析和比較;然后介紹了FPGA芯片的特性和SOPC系統的特點,并分析比較了傳統測量諧波裝置和基于FPGA的新型諧波測量儀器的特性。綜述了可編程元器件的發展過程、主要工藝發展及目前的應用情況。 然后,對整個諧波處理器系統的框架及結構進行描述,包括系統的功能結構分配,外圍硬件電路的結構及軟件設計流程。其后,針對系統外圍硬件電路、FFTIP核設計和SOPC系統的組建,進行詳細的分析與設計。系統采用NiosⅡ處理器核和FFT運算協處理器相結合的結構。FFT運算用專門的FFT運算協處理器核完成,使得系統克服的單片機系統實時性差和速度慢的缺點。FFTIP核采用現在ASIC領域的一種主流硬件描述語言VHDL進行編寫,采用順序的處理結構和IEEE浮點標準運算,具有系統簡單、占用硬件資源少和高運算精度的優點。諧波分析儀系統組建采用SOPC系統。SOPC系統具有可對硬件剪裁和添加的特點,使得系統的更簡單,應用面更廣,專用性更強的優點。最后,給出了對系統中各模塊進行仿真及系統生成的結果。
上傳時間: 2013-04-24
上傳用戶:cy_ewhat