out< "please input the number of the nodes"<<endl
cin>>nodesNum
cout<<"please input the graph"<<endl
for( i = 1 i<=nodesNum i++)
for( j = 1 j <= nodesNum j++)
cin>>graph[i][j] */
function [U,center,result,w,obj_fcn]= fenlei(data)
[data_n,in_n] = size(data)
m= 2 % Exponent for U
max_iter = 100 % Max. iteration
min_impro =1e-5 % Min. improvement
c=3
[center, U, obj_fcn] = fcm(data, c)
for i=1:max_iter
if F(U)>0.98
break
else
w_new=eye(in_n,in_n)
center1=sum(center)/c
a=center1(1)./center1
deta=center-center1(ones(c,1),:)
w=sqrt(sum(deta.^2)).*a
for j=1:in_n
w_new(j,j)=w(j)
end
data1=data*w_new
[center, U, obj_fcn] = fcm(data1, c)
center=center./w(ones(c,1),:)
obj_fcn=obj_fcn/sum(w.^2)
end
end
display(i)
result=zeros(1,data_n) U_=max(U)
for i=1:data_n
for j=1:c
if U(j,i)==U_(i)
result(i)=j continue
end
end
end
Instead of finding the longest common
subsequence, let us try to determine the
length of the LCS.
Then tracking back to find the LCS.
Consider a1a2…am and b1b2…bn.
Case 1: am=bn. The LCS must contain am,
we have to find the LCS of a1a2…am-1 and
b1b2…bn-1.
Case 2: am≠bn. Wehave to find the LCS of
a1a2…am-1 and b1b2…bn, and a1a2…am and
b b b
b1b2…bn-1
Let A = a1 a2 … am and B = b1 b2 … bn
Let Li j denote the length of the longest i,g g
common subsequence of a1 a2 … ai and b1 b2
… bj.
Li,j = Li-1,j-1 + 1 if ai=bj
max{ L L } a≠b i-1,j, i,j-1 if ai≠j
L0,0 = L0,j = Li,0 = 0 for 1≤i≤m, 1≤j≤n.