All inputs of the C16x family have Schmitt-Trigger input characteristics. These Schmitt-Triggers are intended to always provide proper internal low and high levels, even if anundefined voltage level (between TTL-VIL and TTL-VIH) is externally applied to the pin.The hysteresis of these inputs, however, is very small, and can not be properly used in anapplication to suppress signal noise, and to shape slow rising/falling input transitions.Thus, it must be taken care that rising/falling input signals pass the undefined area of theTTL-specification between VIL and VIH with a sufficient rise/fall time, as generally usualand specified for TTL components (e.g. 74LS series: gates 1V/us, clock inputs 20V/us).The effect of the implemented Schmitt-Trigger is that even if the input signal remains inthe undefined area, well defined low/high levels are generated internally. Note that allinput signals are evaluated at specific sample points (depending on the input and theperipheral function connected to it), at that signal transitions are detected if twoconsecutive samples show different levels. Thus, only the current level of an input signalat these sample points is relevant, that means, the necessary rise/fall times of the inputsignal is only dependant on the sample rate, that is the distance in time between twoconsecutive evaluation time points. If an input signal, for instance, is sampled throughsoftware every 10us, it is irrelevant, which input level would be seen between thesamples. Thus, it would be allowable for the signal to take 10us to pass through theundefined area. Due to the sample rate of 10us, it is assured that only one sample canoccur while the signal is within the undefined area, and no incorrect transition will bedetected. For inputs which are connected to a peripheral function, e.g. capture inputs, thesample rate is determined by the clock cycle of the peripheral unit. In the case of theCAPCOM unit this means a sample rate of 400ns @ 20MHz CPU clock. This requiresinput signals to pass through the undefined area within these 400ns in order to avoidmultiple capture events.For input signals, which do not provide the required rise/fall times, external circuitry mustbe used to shape the signal transitions.In the attached diagram, the effect of the sample rate is shown. The numbers 1 to 5 in thediagram represent possible sample points. Waveform a) shows the result if the inputsignal transition time through the undefined TTL-level area is less than the time distancebetween the sample points (sampling at 1, 2, 3, and 4). Waveform b) can be the result ifthe sampling is performed more than once within the undefined area (sampling at 1, 2, 5,3, and 4).Sample points:1. Evaluation of the signal clearly results in a low level2. Either a low or a high level can be sampled here. If low is sampled, no transition willbe detected. If the sample results in a high level, a transition is detected, and anappropriate action (e.g. capture) might take place.3. Evaluation here clearly results in a high level. If the previous sample 2) had alreadydetected a high, there is no change. If the previous sample 2) showed a low, atransition from low to high is detected now.
上傳時間: 2013-10-23
上傳用戶:copu
All inputs of the C16x family have Schmitt-Trigger input characteristics. These Schmitt-Triggers are intended to always provide proper internal low and high levels, even if anundefined voltage level (between TTL-VIL and TTL-VIH) is externally applied to the pin.The hysteresis of these inputs, however, is very small, and can not be properly used in anapplication to suppress signal noise, and to shape slow rising/falling input transitions.Thus, it must be taken care that rising/falling input signals pass the undefined area of theTTL-specification between VIL and VIH with a sufficient rise/fall time, as generally usualand specified for TTL components (e.g. 74LS series: gates 1V/us, clock inputs 20V/us).The effect of the implemented Schmitt-Trigger is that even if the input signal remains inthe undefined area, well defined low/high levels are generated internally. Note that allinput signals are evaluated at specific sample points (depending on the input and theperipheral function connected to it), at that signal transitions are detected if twoconsecutive samples show different levels. Thus, only the current level of an input signalat these sample points is relevant, that means, the necessary rise/fall times of the inputsignal is only dependant on the sample rate, that is the distance in time between twoconsecutive evaluation time points. If an input signal, for instance, is sampled throughsoftware every 10us, it is irrelevant, which input level would be seen between thesamples. Thus, it would be allowable for the signal to take 10us to pass through theundefined area. Due to the sample rate of 10us, it is assured that only one sample canoccur while the signal is within the undefined area, and no incorrect transition will bedetected. For inputs which are connected to a peripheral function, e.g. capture inputs, thesample rate is determined by the clock cycle of the peripheral unit. In the case of theCAPCOM unit this means a sample rate of 400ns @ 20MHz CPU clock. This requiresinput signals to pass through the undefined area within these 400ns in order to avoidmultiple capture events.
上傳時間: 2014-04-02
上傳用戶:han_zh
This application note demonstrates how to write an Inter Integrated Circuit bus driver (I2C) for the XA-S3 16-bitMicrocontroller from Philips Semiconductors.Not only the driver software is given. This note also contains a set of (example) interface routines and a smalldemo application program. All together it offers the user a quick start in writing a complete I2C system applicationwith the PXAS3x.The driver routines support interrupt driven single master transfers. Furthermore, the routines are suitable foruse in conjunction with real time operating systems.
上傳時間: 2013-11-02
上傳用戶:zw380105939
The 87LPC76X Microcontroller combines in a small package thebenefits of a high-performance microcontroller with on-boardhardware supporting the Inter-Integrated Circuit (I2C) bus interface.The 87LPC76X can be programmed both as an I2C bus master, aslave, or both. An overview of the I2C bus and description of the bussupport hardware in the 87LPC76X microcontrollers appears inapplication note AN464, Using the 87LPC76X Microcontroller as anI2C Bus Master. That application note includes a programmingexample, demonstrating a bus-master code. Here we show anexample of programming the microcontroller as an I2C slave.The code listing demonstrates communications routines for the87LPC76X as a slave on the I2C bus. It compliments the program inAN464 which demonstrates the 87LPC76X as an I2C bus master.One may demonstrate two 87LPC76X devices communicating witheach other on the I2C bus, using the AN464 code in one, and theprogram presented here in the other. The examples presented hereand in AN464 allow the 87LPC76X to be either a master or a slave,but not both. Switching between master and slave roles in amultimaster environment is described in application note AN435.The software for a slave on the bus is relatively simple, as theprocessor plays a relatively passive role. It does not initiate bustransfers on its own, but responds to a master initiating thecommunications. This is true whether the slave receives or transmitsdata—transmission takes place only as a response to a busmaster’s request. The slave does not have to worry about arbitrationor about devices which do not acknowledge their address. As theslave is not supposed to take control of the bus, we do not demandit to resolve bus exceptions or “hangups”. If the bus becomesinactive the processor simply withdraws, not interfering with themaster (or masters) on the bus which should (hopefully) try toresolve the situation.
上傳時間: 2013-11-19
上傳用戶:shirleyYim
I2C interface, is a very powerful tool for system designers. Theintegrated protocols allow systems to be completely software defined.Software development time of different products can be reduced byassembling a library of reusable software modules. In addition, themultimaster capability allows rapid testing and alignment ofend-products via external connections to an assembly-line computer.The mask programmable 87LPC76X and its EPROM version, the87LPC76X, can operate as a master or a slave device on the I2Csmall area network. In addition to the efficient interface to thededicated function ICs in the I2C family, the on-board interfacefacilities I/O and RAM expansion, access to EEPROM andprocessor-to-processor communications.
標簽: microcontro Using 76X LPC
上傳時間: 2013-12-30
上傳用戶:Artemis
802.3af-2003_標準 802.3af-2003_modified IEEE Std 802.3a-2003 (Amendment to IEEE Std 802.3?-2002, including IEEE Std 802.3ae-2002) IEE
上傳時間: 2013-12-27
上傳用戶:wudu0932
樓宇自控系統 一、智能建筑概述 二、樓宇自控的發展史 三、樓宇自控系統 BAS子系統
標簽: 樓宇自控
上傳時間: 2013-12-17
上傳用戶:dxxx
The #1 Step-by-Step Guide to labviewNow Completely Updated for labview 8! Master labview 8 with the industry's friendliest, most intuitive tutorial: labview for Everyone, Third Edition. Top labview experts Jeffrey Travis and Jim Kring teach labview the easy way: through carefully explained, step-by-step examples that give you reusable code for your own projects! This brand-new Third Edition has been fully revamped and expanded to reflect new features and techniques introduced in labview 8. You'll find two new chapters, plus dozens of new topics, including Project Explorer, AutoTool, XML, event-driven programming, error handling, regular expressions, polymorphic VIs, timed structures, advanced reporting, and much more. Certified labview Developer (CLD) candidates will find callouts linking to key objectives on NI's newest exam, making this book a more valuable study tool than ever. Not just what to d why to do it! Use labview to build your own virtual workbench Master labview's foundations: wiring, creating, editing, and debugging VIs; using controls and indicators; working with data structures; and much more Learn the "art" and best practices of effective labview development NEW: Streamline development with labview Express VIs NEW: Acquire data with NI-DAQmx and the labview DAQmx VIs NEW: Discover design patterns for error handling, control structures, state machines, queued messaging, and more NEW: Create sophisticated user interfaces with tree and tab controls, drag and drop, subpanels, and more Whatever your application, whatever your role, whether you've used labview or not, labview for Everyone, Third Edition is the fastest, easiest way to get the results you're after!
上傳時間: 2013-10-14
上傳用戶:shawvi
第一課 labview概述..................4 第一節 虛擬儀器(VI)的概念..4 第二節 labview的操作模板........6 工具模板(Tools Palette).........6 控制模板(Controls Palette).........7 功能模板(Functions Palette).......8 第三節 創建一個VI程序..........10 1. 前面板...10 框圖程序..............11 從框圖程序窗口創建前面板對象................12 4. 數據流編程...............12 第四節 程序調試技術................13 1. 找出語法錯誤...........13 2. 設置執行程序高亮...13 3. 斷點與單步執行.......13 4. 探針.......14 第五節 練習1-1.....14 第六節 把一個VI程序作為子VI程序調用17 第七節 練習1-2.....18 第八節 練習1-3.....20 第九節 練習1-4.....22 第十節 練習1-5.....24 第二課 數據采集.......27 第一節 概述..........27 第二節 數據采集VI程序的調用方法..........29 第三節 模擬輸入與輸出............30 練習2-1...............31 第四節 波形的采集與產生........34 練習2-2...............35 第五節 掃描多個模擬輸入通道.36 練習2-3...............36 第六節 連續數據采集................37 練習2-4...............38 第三課 儀器控制.......40 第一節 概述..........40 第二節 串行通訊....40 第三節 IEEE 488(GPIB)概述41 練習3-1...............43 第四節 VISA編程...44
上傳時間: 2013-11-05
上傳用戶:nem567397
labview 虛擬儀器入門labview 程序又稱虛擬儀器,即VI,其外觀和操作類似于真實的物理儀器(如示波器和萬用表)。labview擁有一整套工具用于數據采集、分析、顯示和存儲數據,以及解決用戶編寫代碼中可能出現的問題。labview 提供眾多輸入控件和顯示控件用于創建用戶界面,即前面板。輸入控件是指旋鈕、按鈕、轉盤等輸入裝置。顯示控件是指圖形、指示燈等輸出顯示裝置。創建用戶界面后,可用VI和結構來添加代碼,從而控制前面板對象。labview 的圖形化源代碼在某種程度上類似于流程圖,labview 可與一些硬件(如數據采集、視覺、運動控制設備、GPIB、PXI、VXI、RS232 以及RS485等儀器)進行通信。
上傳時間: 2013-11-16
上傳用戶:gxf2016