Software Radio (SR) is one of the most important emerging technologies for the
future of wireless communication services. By moving radio functionality into
software, it promises to give flexible radio systems that are multi-service, multi-
standard, multi-band, reconfigurable and reprogrammable by software.
Today’s radios are matched to a particular class of signals that are well defined
bytheircarrierfrequencies,modulationformatsandbandwidths.Aradiotransmitter
today can only up convert signals with well-defined bandwidths over defined center
frequencies, while, on the other side of the communication chain, a radio receiver
can only down convert well-defined signal bandwidths, transmitted over specified
carrier frequencies.
The idea for this book was born during one of my project-related trips to the beautiful city
of Hangzhou in China, where in the role of Chief Architect I had to guide a team of very
young, very smart and extremely dedicated software developers and verification engineers.
Soon it became clear that as eager as the team was to jump into the coding, it did not have
any experience in system architecture and design and if I did not want to spend all my time in
constant travel between San Francisco and Hangzhou, the only option was to groom a number
of local junior architects. Logically, one of the first questions being asked by these carefully
selected future architects was whether I could recommend a book or other learning material
that could speed up the learning cycle. I could not. Of course, there were many books on
various related topics, but many of them were too old and most of the updated information
was either somewhere on the Internet dispersed between many sites and online magazines, or
buried in my brain along with many years of experience of system architecture.
I love telecommunications. It is powerful and it empowers, with
far-reaching consequences. It has demonstrated the potential to transform
society and business, and the revolution has only just begun. With the invention
of the telephone, human communications and commerce were forever changed: Time
and distance began to melt away as a barrier to doing business, keeping in touch
with loved ones, and being able to immediately respond to major world events.
Through the use of computers and telecommunications networks, humans have been
able to extend their powers of thinking, influence, and productivity, just as
those in the Industrial Age were able to extend the power of their muscles, or
physical self, through use of heavy machinery.
Wireless communication has become increasingly important not only for professional appli-
cations but also for many fields in our daily routine and in consumer electronics. In 1990,
a mobile telephone was still quite expensive, whereas today most teenagers have one, and
they use it not only for calls but also for data transmission. More and more computers use
wireless local area networks (WLANs), and audio and television broadcasting has become
digital.
The information age is exploding around us,
giving us access to dizzying amounts of data the instant it becomes available.
Smart phones and tablets provide an untethered experience that offers stream-
ing video, audio, and other media formats to just about any place on the planet.
Even people who are not “computer literate” use Facebook to catch up with
friends and family, use Google to research a new restaurant choice and print
directions to get there, or Tweet their reactions once they have sampled the
fare. The budding Internet-of-things will only catalyze this data eruption.
The infrastructure supporting these services is also growing exponentially,
and the technology that facilitates this rapid growth is virtualization.
The wide deployment of wireless networks and mobile technologies, along with the
significant increase in the number of mobile device users, have created a very strong
demand on various wireless-based, mobile-based software application systems and
enabling technologies. This not only provides many new business opportunities and
challenges to wireless and networking service providers, mobile technology ven-
dors, and software industry and solution integrators, butalso changes and enhances
people’s lives in many areas, including communications, information sharing and
exchange, commerce, home environment, education, and entertainment. Business
organizations and government agencies face new pressure fortechnology updatesto
upgrade their networking infrastructures with wireless connectivity to enhance
enterprise-oriented systems and solutions.
The planarization technology of Chemical-Mechanical-Polishing (CMP), used for the manufacturing of multi-
level metal interconnects for high-density Integrated Circuits (IC), is also readily adaptable as an enabling technology
in MicroElectroMechanical Systems (MEMS) fabrication, particularly polysilicon surface micromachining. CMP not
only eases the design and manufacturability of MEMS devices by eliminating several photolithographic and film
issues generated by severe topography, but also enables far greater flexibility with process complexity and associated
designs. T
Thanks to the advances in micromachining fabrication technologies and significant
cost reduction due to mass production, miniature sensors of angular rate, or
gyroscopes, found their way into the everyday life of every user of modern gadgets,
such as smart phones, tablets or even wristwatches. Often without realising, many
of us are carrying in our pockets fully equipped with all necessary sensors complete
inertial navigation systems that not so long ago were available only for advanced
vehicles in sea, land, air or space. Accelerometers and gyroscopes are found in
specifications of any gadget supposed to react to user movements. And one of the
most commonly used type of gyroscopes used to developed these systems is
Coriolis vibratory gyroscope (CVG).
Over many years, RF-MEMS have been a hot topic in research at the technology
and device level. In particular, various kinds of mechanical Si-MEMS resonators
and piezoelectric BAW (bulk acoustic wave) resonators have been developed. The
BAW technology has made its way to commercial products for passive RF filters,
in particular for duplexers in RF transceiver front ends for cellular communica-
tions. Beyond their use in filters, micromachined resonators can also be used in
conjunction with active devices in innovative circuits and architectures.
Plug in Electric Vehicles (PEVs) use energy storages usually in the form of battery
banks that are designed to be recharged using utility grid power. One category of
PEVs are Electric Vehicles (EVs) without an internal-combustion (IC) engine
where the energy stored in the battery bank is the only source of power to drive the
vehicle. These are also referred as Battery Electric Vehicles (BEVs). The second
category of PEVs, which is more commercialized than the EVs, is the Plug in