This document provides practical, common guidelines for incorporating PCI Express interconnect
layouts onto Printed Circuit Boards (PCB) ranging from 4-layer desktop baseboard designs to 10-
layer or more server baseboard designs. Guidelines and constraints in this document are intended
for use on both baseboard and add-in card PCB designs. This includes interconnects between PCI
Express devices located on the same baseboard (chip-to-chip routing) and interconnects between
a PCI Express device located “down” on the baseboard and a device located “up” on an add-in
card attached through a connector.
This document is intended to cover all major components of the physical interconnect including
design guidelines for the PCB traces, vias and AC COUPLING capacitors, as well as add-in card
edge-finger and connector considerations. The intent of the guidelines and examples is to help
ensure that good high-speed signal design practices are used and that the timing/jitter and
loss/attenuation budgets can also be met from end-to-end across the PCI Express interconnect.
However, while general physical guidelines and suggestions are given, they may not necessarily
guarantee adequate performance of the interconnect for all layouts and implementations.
Therefore, designers should consider modeling and simulation of the interconnect in order to
ensure compliance to all applicable specifications.
The document is composed of two main sections. The first section provides an overview of
general topology and interconnect guidelines. The second section concentrates on physical layout
constraints where bulleted items at the beginning of a topic highlight important constraints, while
the narrative that follows offers additional insight.
This document provides practical, common guidelines for incorporating PCI Express interconnect
layouts onto Printed Circuit Boards (PCB) ranging from 4-layer desktop baseboard designs to 10-
layer or more server baseboard designs. Guidelines and constraints in this document are intended
for use on both baseboard and add-in card PCB designs. This includes interconnects between PCI
Express devices located on the same baseboard (chip-to-chip routing) and interconnects between
a PCI Express device located “down” on the baseboard and a device located “up” on an add-in
card attached through a connector.
This document is intended to cover all major components of the physical interconnect including
design guidelines for the PCB traces, vias and AC COUPLING capacitors, as well as add-in card
edge-finger and connector considerations. The intent of the guidelines and examples is to help
ensure that good high-speed signal design practices are used and that the timing/jitter and
loss/attenuation budgets can also be met from end-to-end across the PCI Express interconnect.
However, while general physical guidelines and suggestions are given, they may not necessarily
guarantee adequate performance of the interconnect for all layouts and implementations.
Therefore, designers should consider modeling and simulation of the interconnect in order to
ensure compliance to all applicable specifications.
The document is composed of two main sections. The first section provides an overview of
general topology and interconnect guidelines. The second section concentrates on physical layout
constraints where bulleted items at the beginning of a topic highlight important constraints, while
the narrative that follows offers additional insight.
A system simulation environment in Matlab/Simulink of RFID is constructed in this paper.
Special attention is emphasized on the analog/RF circuit.Negative effects are concerned in the system
model,such as phase noise of the local oscillator,TX-RX COUPLING,reflection of the environment,
AWGN noise,DC offset,I/Q mismatch,etc.Performance of the whole system can be evaluated by
changing the coding method,parameters of building blocks,and operation distance.Finally,some
simulation results are presented in this paper.
This research work aims at eliminating the off-chip RF SAW filters from fre-
quency division duplexed (FDD) receivers. In the first approach, a monolithic passive
RF filter was constructed using on-chip capacitors and bondwire inductors. The bond-
wire characteristics were studied in details and the effect of mutual inductive COUPLING
between the bondwires on the filter performance was analyzed. Based on that, a bond-
wire configuration was proposed to improve the frequency response of the filter. The
filter was implemented in 0.18 μm CMOS process for WCDMA applications.
Sensors are points ofcontact betweenthe material world ofatoms, mass, andenergy
and the seemingly immaterial world of information, computation, and cognition.
Linking these two domains more tightly yields all sorts of practical benefits, such as
improvedinputdevicesforcomputers,moreeffectivemedicaldevices(implantedor
worn), more precise agricultural operations, better monitored buildings or bridges,
more secure payment systems, and more reliable sensor–actuator control systems.
There are many settings in which tighter COUPLING between digital and physical
planes can enhance safety, security, performance, and reliability.
This design uses Common-Emitter Amplifier (Class A) with 2N3904 Bipolar Junction Transistor.
Use “Voltage Divider Biasing” to reduce the effects of varying β (= ic / ib) (by holding the Base voltage constant)
Base Voltage (Vb) = Vcc * [R2 / (R1 + R2)]
Use COUPLING Capacitors to separate the AC signals from the DC biasing voltage (which only pass AC signals and block any DC component).
Use Bypass Capacitor to maintain the Q-point stability.
To determine the value of each component, first set Q-point close to the center position of the load line. (RL is the resistance of the speaker.)