Abstract: This application note explains the hardware of different types of 1-Wire® interfaces and software examples adapted to this hardware with a focus on serial ports. Depending on the types of iButtons required for a project and the type of computer to be used, the most economical interface is easily found. The hardware examples shown are basically two different types: 5V general interface and 12V RS-232 interface. Within the 5V group a common printed circuit board could be used for all circuits described. The variations can be achieved by different populations of components. The same principal is used for the 12V RS-232 interface. The population determines if it is a Read all or a Read/Write all type of interface. There are other possible circuit implementations to create a 1-Wire interface. The circuits described in this application note cover many different configurations. For a custom application, one of the described options can be adapted to meet individual needs.
標(biāo)簽: iButtons Reading Writing and
上傳時(shí)間: 2013-10-29
上傳用戶:long14578
winCE msdn講座 XP Embedded Now and the future Windows XP Embedded Developmentand Deployment Model OverviewWindows XP Embedded Component ModelWindows XP Embedded Studio Tools Microsoft WindowsXP Embedded Product Highlights Componentized version of Windows XP Professional~ 12,000 components and updates as of Service Pack 2Flexible localizationSame binaries and API as Windows XP ProfessionalHotfixes and service packsEmbedded Enabling FeaturesRuns on standard PC hardwareSupports boot on hard drives, compact flash, DiskOnChipand read-only mediaSupport for remote install and remote bootHeadless device and remote management supportIntegration with Microsoft management tools
上傳時(shí)間: 2013-10-31
上傳用戶:jrsoft
The AT89C52 is a low-power, high-performance CMOS 8-bit microcomputer with 8Kbytes of Flash programmable and erasable read only memory (PEROM). The deviceis manufactured using Atmel’s high-density nonvolatile memory technology and iscompatible with the industry-standard 80C51 and 80C52 instruction set and pinout.The on-chip Flash allows the program memory to be reprogrammed in-system or by aconventional nonvolatile memory programmer. By combining a versatile 8-bit CPUwith Flash on a monolithic chip, the Atmel AT89C52 is a powerful microcomputerwhich provides a highly-flexible and cost-effective solution to many embedded controlapplications.
上傳時(shí)間: 2013-11-10
上傳用戶:1427796291
pwm research and implementation on mcs-51
標(biāo)簽: implementatio research pwm and
上傳時(shí)間: 2013-11-23
上傳用戶:a155166
As businesses and consumers expect more fromportable electronics, the FPGA industry has beencompelled to re-think how it serves these low-power,cost-sensitive markets. Application classes like
上傳時(shí)間: 2013-11-10
上傳用戶:XLHrest
This white paper discusses how market trends, the need for increased productivity, and new legislation have accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to market. This allows FPGA users to design their own customized safety controllers and provides a significant competitive advantage over traditional microcontroller or ASIC-based designs. Introduction The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas around machines such as fast-moving robots, and distributed control systems in process automation equipment such as those used in petrochemical plants. The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was developed in the mid-1980s and has been revised several times to cover the technical advances in various industries. In addition, derivative standards have been developed for specific markets and applications that prescribe the particular requirements on functional safety systems in these industry applications. Example applications include process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC 62304), automotive (ISO 26262), power generation, distribution, and transportation. 圖Figure 1. Local Safety System
標(biāo)簽: FPGA 安全系統(tǒng)
上傳時(shí)間: 2013-11-05
上傳用戶:維子哥哥
Abstract: There are many things to consider when designing a power supply for a field-programmablegate array (FPGA). These include (but are not limited to) the high number of voltage rails, and thediffering requirements for both sequencing/tracking and the voltage ripple limits. This application noteexplains these and other power-supply considerations that an engineer must think through whendesigning a power supply for an FPGA.
上傳時(shí)間: 2013-11-10
上傳用戶:iswlkje
Abstract: This reference design explains how to power the Xilinx Zynq Extensible Processing Platform (EPP) and peripheral ICs using
標(biāo)簽: Xilinx Zynq EPP 擴(kuò)展式
上傳時(shí)間: 2014-01-21
上傳用戶:haohao
This application note describes how to build a system that can be used for determining theoptimal phase shift for a Double Data Rate (DDR) memory feedback clock. In this system, theDDR memory is controlled by a controller that attaches to either the OPB or PLB and is used inan embedded microprocessor application. This reference system also uses a DCM that isconfigured so that the phase of its output clock can be changed while the system is running anda GPIO core that controls that phase shift. The GPIO output is controlled by a softwareapplication that can be run on a PowerPC® 405 or Microblaze™ microprocessor.
上傳時(shí)間: 2013-10-15
上傳用戶:euroford
Xilinx FPGAs require at least two power supplies: VCCINTfor core circuitry and VCCO for I/O interface. For the latestXilinx FPGAs, including Virtex-II Pro, Virtex-II and Spartan-3, a third auxiliary supply, VCCAUX may be needed. Inmost cases, VCCAUX can share a power supply with VCCO.The core voltages, VCCINT, for most Xilinx FPGAs, rangefrom 1.2V to 2.5V. Some mature products have 3V, 3.3Vor 5V core voltages. Table 1 shows the core voltagerequirement for most of the FPGA device families. TypicalI/O voltages (VCCO) vary from 1.2V to 3.3V. The auxiliaryvoltage VCCAUX is 2.5V for Virtex-II Pro and Spartan-3, andis 3.3V for Virtex-II.
上傳時(shí)間: 2013-10-22
上傳用戶:liu999666
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1