Differential Nonlinearity: Ideally, any two adjacent digitalcodes correspond to output analog voltages that are exactlyone LSB apart. Differential non-linearity is a measure of theworst case deviation from the ideal 1 LSB step. For example,a DAC with a 1.5 LSB output change for a 1 LSB digital codechange exhibits 1⁄2 LSB differential non-linearity. Differentialnon-linearity may be expressed in fractional bits or as a percentageof full scale. A differential non-linearity greater than1 LSB will lead to a non-monotonic transfer function in aDAC.Gain Error (Full Scale Error): The difference between theoutput voltage (or current) with full scale input code and theideal voltage (or current) that should exist with a full scale inputcode.Gain Temperature Coefficient (Full Scale TemperatureCoefficient): Change in gain error divided by change in temperature.Usually expressed in parts per million per degreeCelsius (ppm/°C).Integral Nonlinearity (Linearity Error): Worst case deviationfrom the line between the endpoints (zero and full scale).Can be expressed as a percentage of full scale or in fractionof an LSB.LSB (Lease-Significant Bit): In a binary coded system thisis the bit that carries the smallest value or weight. Its value isthe full scale voltage (or current) divided by 2n, where n is theresolution of the converter.Monotonicity: A monotonic function has a slope whose signdoes not change. A monotonic DAC has an output thatchanges in the same direction (or remains constant) for eachincrease in the input code. the converse is true for decreasing codes.
標(biāo)簽: Converters Defini DAC
上傳時(shí)間: 2013-10-30
上傳用戶:stvnash
分析了調(diào)幅信號(hào)和載波信號(hào)之間的相位差與調(diào)制信號(hào)的極性的對(duì)應(yīng)關(guān)系,得出了相敏檢波電路輸出電壓的極性與調(diào)制信號(hào)的極性有對(duì)應(yīng)關(guān)系的結(jié)論。為了驗(yàn)證相敏檢波電路的這一特性,給出3 個(gè)電路方案,分別選用理想元件和實(shí)際元件,采用Multisim 對(duì)其進(jìn)行仿真實(shí)驗(yàn),直觀形象地演示了相敏檢波電路的鑒相特性,是傳統(tǒng)的實(shí)際操作實(shí)驗(yàn)所不可比擬的。關(guān)鍵詞:相敏檢波;鑒相特性;Multisim;電路仿真 Abstract : The corresponding relation between modulation signal polarity and difference phases of amplitudemodulated signal and the carrier signal ,the polarity of phase2sensitive detecting circuit output voltage and the polarity of modulation signal are correspondent . In order to verify this characteristic ,three elect ric circuit s plans are produced ,idea element s and actual element s are selected respectively. Using Multisim to carry on a simulation experiment ,and then demonst rating the phase detecting characteristic of the phase sensitive circuit vividly and directly. Which is t raditional practical experience cannot be com pared.Keywords :phase sensitive detection ;phase2detecting characteristic ;Multisim;circuit simulation
上傳時(shí)間: 2013-11-23
上傳用戶:guanhuihong
Power conversion by virtue of its basic role produces harmonics due to theslicing of either voltages or currents. To a large extent the pollution in theutility supply and the deterioration of the power quality has been generatedor created by non-linear converters. It is therefore ironic that power convertersshould now be used to clean up the pollution that they helped to create inthe first place.In a utility system, it is desirable to prevent harmonic currents (which resultin EMI and resonance problems) and limit reactive power flows (whichresult in transmission losses).Traditionally, shunt passive filters, comprised of tuned LC elements andcapacitor banks, were used to filter the harmonics and to compensate forreactive current due to non-linear loads. However, in practical applicationsthese methods have many disadvantages.
上傳時(shí)間: 2013-11-05
上傳用戶:AISINI005
Finite state machines are widely used in digital circuit designs. Generally, when designing a state machine using an HDL, the synthesis tools will optimize away all states that cannot be reached and generate a highly optimized circuit. Sometimes, however, the optimization is not acceptable. For example, if the circuit powers up in an invalid state, or the circuit is in an extreme working environment and a glitch sends it into an undesired state, the circuit may never get back to its normal operating condition.
標(biāo)簽: Creating Machines Mentor State
上傳時(shí)間: 2013-10-08
上傳用戶:wangzhen1990
Integrated EMI/Thermal Design forSwitching Power SuppliesWei ZhangThesis submitted to the Faculty of theVirginia Polytechnic Institute and State Universityin partial fulfillment of the requirements for the degree of Integrated EMI/Thermal Design forSwitching Power SuppliesWei Zhang(ABSTRACT)This work presents the modeling and analysis of EMI and thermal performancefor switch power supply by using the CAD tools. The methodology and design guidelinesare developed.By using a boost PFC circuit as an example, an equivalent circuit model is builtfor EMI noise prediction and analysis. The parasitic elements of circuit layout andcomponents are extracted analytically or by using CAD tools. Based on the model, circuitlayout and magnetic component design are modified to minimize circuit EMI. EMI filtercan be designed at an early stage without prototype implementation.In the second part, thermal analyses are conducted for the circuit by using thesoftware Flotherm, which includes the mechanism of conduction, convection andradiation. Thermal models are built for the components. Thermal performance of thecircuit and the temperature profile of components are predicted. Improved thermalmanagement and winding arrangement are investigated to reduce temperature.In the third part, several circuit layouts and inductor design examples are checkedfrom both the EMI and thermal point of view. Insightful information is obtained.
標(biāo)簽: EMI 開關(guān)電源 英文
上傳時(shí)間: 2013-11-10
上傳用戶:1595690
Sensing and/or controlling current flow is a fundamental requirement in many electronics systems, and the tech-niques to do so are as diverse as the applications them-selves.
標(biāo)簽: 電流采樣
上傳時(shí)間: 2013-10-15
上傳用戶:daoyue
The core voltages for FPGAs are moving lower as a resultof advances in the fabrication process. The newest FPGAfamily from Altera, the Stratix® II, now requires a corevoltage of 1.2V and the Stratix, Stratix GX, HardCopy®Stratix and CycloneTM families require a core voltage of1.5V. This article discusses how to power the core and I/Oof low voltage FPGAs using the latest step-down switchmode controllers from Linear Technology Corporation.
標(biāo)簽: FPGA 低電壓 高性能開關(guān) 電源解決方案
上傳時(shí)間: 2013-10-08
上傳用戶:wangfei22
Automobile electronic systems place high demands ontoday’s DC/DC converters. They must be able to preciselyregulate an output voltage in the face of wide temperatureand input voltage ranges—including load dump transientsin excess of 60V and cold crank voltage drops to 4V. Theconverter must also be able to minimize battery drain inalways-on systems by maintaining high effi ciency over abroad load current range. Similar demands are made bymany 48V nonisolated telecom applications, 40V FireWireperipherals and battery-powered applications with autoplug adaptors. The LT3437’s best in classperformancemeets all of these requirements in a small thermallyenhanced 3mm × 3mm DFN package.
標(biāo)簽: 378 DN 低靜態(tài)電流 單片式
上傳時(shí)間: 2013-10-15
上傳用戶:stampede
Avalanche photo diode (APD) receiver modules arewidely used in fi ber optic communication systems. AnAPD module contains the APD and a signal conditioningamplifi er, but is not completely self contained. It stillrequires signifi cant support circuitry including a highvoltage, low noise power supply and a precision currentmonitor to indicate the signal strength. The challenge issqueezing this support circuitry into applications withlimited board space. The LT®3482 addresses this challengeby integrating a monolithic DC/DC step-up converter andan accurate current monitor. The LT3482 can supportup to a 90V APD bias voltage, and the current monitorprovides better than 10% accuracy over four decades ofdynamic range (250nA to 2.5mA).
上傳時(shí)間: 2014-01-18
上傳用戶:wenyuoo
Providing power for the Pentium® microprocessor family isnot a trivial task by any means. In an effort to simplify thistask we have developed a new switching regulator controlcircuit and a new linear regulator to address the needs ofthese processors. Considerable time has been spent developingan optimized decoupling network. Here are severalcircuits using the new LTC®1266 synchronous buck regulatorcontrol chip and the LT®1584 linear regulator toprovide power for Pentium processors and Pentium VREprocessors. The Pentium processor has a supply requirementof 3.3V ±5%. The Pentium VRE processor requires3.500V ±100mV.
上傳時(shí)間: 2013-11-01
上傳用戶:名爵少年
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1