Introduction to Xilinx Packaging Electronic packages are interconnectable housings for semiconductor devices. The major functions of the electronic packages are to provide electrical interconnections between the IC and the board and to efficiently remove heat generated by the device. Feature sizes are constantly shrinking, resulting in increased number of transistors being packed into the device. Today's submicron technology is also enabling large-scale functional integration and system-on-a-chip solutions. In order to keep pace with these new advancements in silicon technologies, semiconductor packages have also evolved to provide improved device functionality and perFormance. Feature size at the device level is driving package feature sizes down to the design rules of the early transistors. To meet these demands, electronic packages must be flexible to address high pin counts, reduced pitch and Form factor requirements. At the same time,packages must be reliable and cost effective.
上傳時(shí)間: 2013-10-22
上傳用戶:ztj182002
Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the developmentof designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit theDocumentation in any Form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reservesthe right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errorscontained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection withtechnical support or assistance that may be provided to you in connection with the InFormation.
標(biāo)簽: Virtex FPGA PCB 設(shè)計(jì)手冊(cè)
上傳時(shí)間: 2014-01-13
上傳用戶:竺羽翎2222
Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation in any Form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the InFormation.
標(biāo)簽: CPLD
上傳時(shí)間: 2013-10-22
上傳用戶:李哈哈哈
1 Communication Protocol (Computer as master) The communication protocol describes here allows your computer to access 4096 internal registers (W0000-W4095) and 1024 internal relays (B0000-B1023) in the Workstation.. 1.1 Request Message Format Request message is a command message to be sent from the computer to the Workstation. The data structure of request message is shown below. Note that numbers are always in hexadecimal Form and converted into ASCII characters. For example, Workstation unit number 14 will appear in the message as character 0(30h) followed by character E(45h); a BCC of 5Ah will appear in the message as character 5(35h) followed by character A(41h).
上傳時(shí)間: 2013-10-28
上傳用戶:cxl274287265
A Computer-On-Module, or COM, is a Module with all components necessary for a bootable host computer, packaged as a super component. A COM requires a Carrier Board to bring out I/O and to power up. COMs are used to build single board computer solutions and offer OEMs fast time-to-market with reduced development cost. Like integrated circuits, they provide OEMs with significant freedom in meeting Form-fit-function requirements. For all these reasons the COM methodology has gained much popularity with OEMs in the embedded industry. COM Express® is an open industry standard for Computer-On-Modules. It is designed to be future proof and to provide a smooth transition path from legacy parallel interfaces to LVDS (Low Voltage Differential Signaling) interfaces. These include the PCI bus and parallel ATA on the one hand and PCI Express and Serial ATA on the other hand.
上傳時(shí)間: 2013-11-05
上傳用戶:Wwill
為滿足無線網(wǎng)絡(luò)技術(shù)具有低功耗、節(jié)點(diǎn)體積小、網(wǎng)絡(luò)容量大、網(wǎng)絡(luò)傳輸可靠等技術(shù)要求,設(shè)計(jì)了一種以MSP430單片機(jī)和CC2420射頻收發(fā)器組成的無線傳感節(jié)點(diǎn)。通過分析其節(jié)點(diǎn)組成,提出了ZigBee技術(shù)中的幾種網(wǎng)絡(luò)拓?fù)湫问?,并研究了ZigBee路由算法。針對(duì)不同的傳輸要求形式選用不同的網(wǎng)絡(luò)拓?fù)湫问娇梢员M大可能地減少系統(tǒng)成本。同時(shí)針對(duì)不同網(wǎng)絡(luò)選用正確的ZigBee路由算法有效地減少了網(wǎng)絡(luò)能量消耗,提高了系統(tǒng)的可靠性。應(yīng)用試驗(yàn)表明,采用ZigBee方式通信可以提高傳輸速率且覆蓋范圍大,與傳統(tǒng)的有線通信方式相比可以節(jié)約40%左右的成本。 Abstract: To improve the proposed technical requirements such as low-ower, small nodes, large capacity and reliable network transmission, wireless sensor nodes based on MSP430 MCU and CC2420 RF transceiver were designed. This paper provided network topology of ZigBee technology by analysing the component of the nodes and researched ZigBee routing algorithm. Aiming at different requirements of transmission mode to choose the different network topologies Form can most likely reduce the system cost. And aiming at different network to choose the correct ZigBee routing algorithm can effectively reduced the network energy consumption and improved the reliability of the system. Results show that the communication which used ZigBee mode can improve the transmission rate, cover more area and reduce 40% cost compared with traditional wired communications mode.
標(biāo)簽: ZigBee 無線傳感網(wǎng)絡(luò) 協(xié)議研究 路由
上傳時(shí)間: 2013-10-09
上傳用戶:robter
The inFormation in this specification is subject to change without notice.Use of this specification for product design requires an executed license agreement from the CompactFlashAssociation.The CompactFlash Association shall not be liable for technical or editorial errors or omissions contained herein; norfor incidental or consequential damages resulting from the furnishing, perFormance, or use of this material.All parts of the CompactFlash Specification are protected by copyright law and all rights are reserved. Thisdocumentation may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to anyelectronic medium or machine readable Form without prior consent, in writing, from the CompactFlash Association.The CFA logo is a trademark of the CompactFlash Association.Product names mentioned herein are for identification purposes only and may be trademarks and/or registeredtrademarks of their respective companies.© 1998-99, CompactFlash Association. All rights reserved.
標(biāo)簽: 技術(shù)資料
上傳時(shí)間: 2013-10-08
上傳用戶:stewart·
Introduction to Xilinx Packaging Electronic packages are interconnectable housings for semiconductor devices. The major functions of the electronic packages are to provide electrical interconnections between the IC and the board and to efficiently remove heat generated by the device. Feature sizes are constantly shrinking, resulting in increased number of transistors being packed into the device. Today's submicron technology is also enabling large-scale functional integration and system-on-a-chip solutions. In order to keep pace with these new advancements in silicon technologies, semiconductor packages have also evolved to provide improved device functionality and perFormance. Feature size at the device level is driving package feature sizes down to the design rules of the early transistors. To meet these demands, electronic packages must be flexible to address high pin counts, reduced pitch and Form factor requirements. At the same time,packages must be reliable and cost effective.
上傳時(shí)間: 2013-11-21
上傳用戶:不懂夜的黑
Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the developmentof designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit theDocumentation in any Form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reservesthe right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errorscontained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection withtechnical support or assistance that may be provided to you in connection with the InFormation.
標(biāo)簽: Virtex FPGA PCB 設(shè)計(jì)手冊(cè)
上傳時(shí)間: 2013-11-11
上傳用戶:zwei41
Xilinx is disclosing this user guide, manual, release note, and/or specification (the “Documentation”) to you solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation in any Form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the InFormation.
標(biāo)簽: CPLD
上傳時(shí)間: 2014-12-05
上傳用戶:qazxsw
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1