We are very pleased to introduce the proceedings of the First EAI International
Conference on Smart Grid Inspired Future Technologies (SmartGIFT 2016). This was
the first SmartGIFT conference, aiming to create a forum for researches, developers,
and practitioners from both academia and industry to publish their key results and to
disseminate state-of-the-art concepts and techniques in all aspects of smart grids. The
37 scientific participants had many fruitful discussions and exchanges that contributed
to the success of the conference. Participants from 12 countries made the conference
truly international in scope.
The term “ smart grid ” defi nes a self - healing network equipped with dynamic optimiza-
tion techniques that use real - time measurements to minimize network losses, maintain
voltage levels, increase reliability, and improve asset management. The operational data
collected by the smart grid and its sub - systems will allow system operators to rapidly
identify the best strategy to secure against attacks, vulnerability, and so on, caused by
various contingencies. However, the smart grid fi rst depends upon identifying and
researching key performance measures, designing and testing appropriate tools, and
developing the proper education curriculum to equip current and future personnel with
the knowledge and skills for deployment of this highly advanced system.
In order to enhance the efficiency and reliability of the power grid, diversify energy
resources, improve power security, and reduce greenhouse gas emission, many
countries have been putting great efforts in designing and constructing their smart
grid(SG) infrastructures.Smart gridcommunicationsnetwork(SGCN) is oneof the
key enabling technologies of the SG. However, a successful implementation of an
efficient and cost-effective SGCN is a challenging task
Abstract: The rapid build out of today's smart grid raises a number of security questions. In this article,we review two recent well-documented security breaches and a report of a security gap. These situationsinclude a 2009 smart-meter hack in Puerto Rico; a 2012 password discovery in grid distributionequipment; and insecure storage of a private key in distribution automation equipment. For each of theseattacks, we examine the breach, the potential threat, and secure silicon methods that, as part of acomplete security strategy, can help thwart the attacks.