Designing withProgrammable Logicin an Analog WorldProgrammable logic devices revolutionizeddigital design over 25 years ago,promising designers a blank chip todesign literally any function and programit in the field. PLDs can be low-logicdensity devices that use nonvolatilesea-of-gates cells called complexprogrammable logic devices (CPLDs)or they can be high-density devicesbased on SRAM look-up tables (LUTs)
標簽: Solutions Analog Altera FPGAs
上傳時間: 2013-10-27
上傳用戶:fredguo
Designing withProgrammable Logicin an Analog WorldProgrammable logic devicesrevolutionized digital design over 25years ago, promising designers a blankchip to design literally any functionand program it in the field. PLDs canbe low-logic density devices that usenonvolatile sea-of-gates cells calledcomplex programmable logic devices(CPLDs) or they can be high-densitydevices based on SRAM look-up tables
標簽: Solutions Analog Xilinx FPGAs
上傳時間: 2013-11-07
上傳用戶:suicone
According to CIBC World Markets, Equity Research, theFlat Panel Display (FPD) industry has achieved sufficientcritical mass for its growth to explode. Thus, it can nowattract the right blend of capital investments and R&Dresources to drive technical innovation toward continuousimprovement in view quality, manufacturing efficiency,and system integration. These in turn are sustainingconsumer interest, penetration, revenue growth, and thepotential for increasing long-term profitability for industryparticipants. CIBC believes that three essential conditionsare now converging to drive the market forward
上傳時間: 2015-01-02
上傳用戶:小楓殘月
Consumer display applications commonly use high-speed LVDS interfaces to transfer videodata. Spread-spectrum clocking can be used to address electromagnetic compatibility (EMC)issues within these consumer devices. This application note uses Spartan®-6 FPGAs togenerate spread-spectrum clocks using the DCM_CLKGEN primitive.
上傳時間: 2013-11-01
上傳用戶:hjkhjk
The Virtex-4 features, such as the programmable IDELAY and built-in FIFO support, simplifythe bridging of a high-speed, PCI-X core to large amounts of DDR-SDRAM memory. Onechallenge is meeting the PCI-X target initial latency specification. PCI-X Protocol Addendum tothe PCI Local Bus Specification Revision 2.0a ([Ref 6]) dictates that when a target signals adata transfer, "the target must do so within 16 clocks of the assertion of FRAME#." PCItermination transactions, such as Split Response/Complete, are commonly used to meet thelatency specifications. This method adds complexity to the design, as well as additional systemlatency. Another solution is to increase the ratio of the memory frequency to the PCI-X busfrequency. However, this solution increases the required power and clock resource usage.
上傳時間: 2013-11-24
上傳用戶:18707733937
The SDI standards are the predominant standards for uncompressed digital videointerfaces in the broadcast studio and video production center. The first SDI standard,SD-SDI, allowed standard-definition digital video to be transported over the coaxial cableinfrastructure initially installed in studios to carry analog video. Next, HD-SDI wasto support high-definition video. Finally, dual link HD-SDI and 3G-SDIdoubled the bandwidth of HD-SDI to support 1080p (50 Hz and 60 Hz) and other videoformats requiring more bandwidth than HD-SDI provides.
上傳時間: 2013-12-08
上傳用戶:liansi
This application note covers the design considerations of a system using the performance features of the LogiCORE™ IP Advanced eXtensible Interface (AXI) Interconnect core. The design focuses on high system throughput through the AXI Interconnect core with F MAX and area optimizations in certain portions of the design. The design uses five AXI video direct memory access (VDMA) engines to simultaneously move 10 streams (five transmit video streams and five receive video streams), each in 1920 x 1080p format, 60 Hz refresh rate, and up to 32 data bits per pixel. Each VDMA is driven from a video test pattern generator (TPG) with a video timing controller (VTC) block to set up the necessary video timing signals. Data read by each AXI VDMA is sent to a common on-screen display (OSD) core capable of multiplexing or overlaying multiple video streams to a single output video stream. The output of the OSD core drives the DVI video display interface on the board. Performance monitor blocks are added to capture performance data. All 10 video streams moved by the AXI VDMA blocks are buffered through a shared DDR3 SDRAM memory and are controlled by a MicroBlaze™ processor. The reference system is targeted for the Virtex-6 XC6VLX240TFF1156-1 FPGA on the Xilinx® ML605 Rev D evaluation board
上傳時間: 2013-11-23
上傳用戶:shen_dafa
XAPP520將符合2.5V和3.3V I/O標準的7系列FPGA高性能I/O Bank進行連接 The I/Os in Xilinx® 7 series FPGAs are classified as either high range (HR) or high performance (HP) banks. HR I/O banks can be operated from 1.2V to 3.3V, whereas HP I/O banks are optimized for operation between 1.2V and 1.8V. In circumstances that require an HP 1.8V I/O bank to interface with 2.5V or 3.3V logic, a range of options can be deployed. This application note describes methodologies for interfacing 7 series HP I/O banks with 2.5V and 3.3V systems
上傳時間: 2013-11-06
上傳用戶:wentianyou
WP409利用Xilinx FPGA打造出高端比特精度和周期精度浮點DSP算法實現方案: High-Level Implementation of Bit- and Cycle-Accurate Floating-Point DSP Algorithms with Xilinx FPGAs
上傳時間: 2013-10-21
上傳用戶:huql11633
Xilinx Next Generation 28 nm FPGA Technology Overview Xilinx has chosen 28 nm high-κ metal gate (HKMG) highperformance,low-power process technology and combined it with a new unified ASMBL™ architecture to create a new generation of FPGAs that offer lower power and higher performance. These devices enable unprecedented levels of integration and bandwidth and provide system architects and designers a fully programmable alternative to ASSPs and ASICs.
上傳時間: 2013-12-07
上傳用戶:bruce