亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

High-efficiency

  • Analog Solutions for Altera FPGAs

    Designing withProgrammable Logicin an Analog WorldProgrammable logic devices revolutionizeddigital design over 25 years ago,promising designers a blank chip todesign literally any function and programit in the field. PLDs can be low-logicdensity devices that use nonvolatilesea-of-gates cells called complexprogrammable logic devices (CPLDs)or they can be high-density devicesbased on SRAM look-up tables (LUTs)

    標簽: Solutions Analog Altera FPGAs

    上傳時間: 2013-10-27

    上傳用戶:fredguo

  • Analog Solutions for Xilinx FPGAs

    Designing withProgrammable Logicin an Analog WorldProgrammable logic devicesrevolutionized digital design over 25years ago, promising designers a blankchip to design literally any functionand program it in the field. PLDs canbe low-logic density devices that usenonvolatile sea-of-gates cells calledcomplex programmable logic devices(CPLDs) or they can be high-densitydevices based on SRAM look-up tables

    標簽: Solutions Analog Xilinx FPGAs

    上傳時間: 2013-11-07

    上傳用戶:suicone

  • WP196-平面顯示器中的Xilinx器件

      According to CIBC World Markets, Equity Research, theFlat Panel Display (FPD) industry has achieved sufficientcritical mass for its growth to explode. Thus, it can nowattract the right blend of capital investments and R&Dresources to drive technical innovation toward continuousimprovement in view quality, manufacturing efficiency,and system integration. These in turn are sustainingconsumer interest, penetration, revenue growth, and thepotential for increasing long-term profitability for industryparticipants. CIBC believes that three essential conditionsare now converging to drive the market forward

    標簽: Xilinx 196 WP 平面顯示器

    上傳時間: 2015-01-02

    上傳用戶:小楓殘月

  • XAPP1065 - 利用Spartan-6 FPGA設計擴頻時鐘發生器

      Consumer display applications commonly use high-speed LVDS interfaces to transfer videodata. Spread-spectrum clocking can be used to address electromagnetic compatibility (EMC)issues within these consumer devices. This application note uses Spartan®-6 FPGAs togenerate spread-spectrum clocks using the DCM_CLKGEN primitive.

    標簽: Spartan XAPP 1065 FPGA

    上傳時間: 2013-11-01

    上傳用戶:hjkhjk

  • XAPP708 -133MHz PCI-X到128MB DDR小型DIMM存儲器橋

      The Virtex-4 features, such as the programmable IDELAY and built-in FIFO support, simplifythe bridging of a high-speed, PCI-X core to large amounts of DDR-SDRAM memory. Onechallenge is meeting the PCI-X target initial latency specification. PCI-X Protocol Addendum tothe PCI Local Bus Specification Revision 2.0a ([Ref 6]) dictates that when a target signals adata transfer, "the target must do so within 16 clocks of the assertion of FRAME#." PCItermination transactions, such as Split Response/Complete, are commonly used to meet thelatency specifications. This method adds complexity to the design, as well as additional systemlatency. Another solution is to increase the ratio of the memory frequency to the PCI-X busfrequency. However, this solution increases the required power and clock resource usage.

    標簽: PCI-X XAPP DIMM 708

    上傳時間: 2013-11-24

    上傳用戶:18707733937

  • WP328-FPGA的語音數據融合

      The SDI standards are the predominant standards for uncompressed digital videointerfaces in the broadcast studio and video production center. The first SDI standard,SD-SDI, allowed standard-definition digital video to be transported over the coaxial cableinfrastructure initially installed in studios to carry analog video. Next, HD-SDI wasto support high-definition video. Finally, dual link HD-SDI and 3G-SDIdoubled the bandwidth of HD-SDI to support 1080p (50 Hz and 60 Hz) and other videoformats requiring more bandwidth than HD-SDI provides.

    標簽: FPGA 328 WP 語音

    上傳時間: 2013-12-08

    上傳用戶:liansi

  • XAPP740利用AXI互聯設計高性能視頻系統

    This application note covers the design considerations of a system using the performance features of the LogiCORE™ IP Advanced eXtensible Interface (AXI) Interconnect core. The design focuses on high system throughput through the AXI Interconnect core with F MAX  and area optimizations in certain portions of the design. The design uses five AXI video direct memory access (VDMA) engines to simultaneously move 10 streams (five transmit video streams and five receive video streams), each in 1920 x 1080p format, 60 Hz refresh rate, and up to 32 data bits per pixel. Each VDMA is driven from a video test pattern generator (TPG) with a video timing controller (VTC) block to set up the necessary video timing signals. Data read by each AXI VDMA is sent to a common on-screen display (OSD) core capable of multiplexing or overlaying multiple video streams to a single output video stream. The output of the OSD core drives the DVI video display interface on the board. Performance monitor blocks are added to capture performance data. All 10 video streams moved by the AXI VDMA blocks are buffered through a shared DDR3 SDRAM memory and are controlled by a MicroBlaze™ processor. The reference system is targeted for the Virtex-6 XC6VLX240TFF1156-1 FPGA on the Xilinx® ML605 Rev D evaluation board

    標簽: XAPP 740 AXI 互聯

    上傳時間: 2013-11-23

    上傳用戶:shen_dafa

  • XAPP520將符合2.5V和3.3V I/O標準的7系列FPGA高性能I/O Bank進行連接

    XAPP520將符合2.5V和3.3V I/O標準的7系列FPGA高性能I/O Bank進行連接  The I/Os in Xilinx® 7 series FPGAs are classified as either high range (HR) or high performance (HP) banks. HR I/O banks can be operated from 1.2V to 3.3V, whereas HP I/O banks are optimized for operation between 1.2V and 1.8V. In circumstances that require an HP 1.8V I/O bank to interface with 2.5V or 3.3V logic, a range of options can be deployed. This application note describes methodologies for interfacing 7 series HP I/O banks with 2.5V and 3.3V systems

    標簽: XAPP FPGA Bank 520

    上傳時間: 2013-11-06

    上傳用戶:wentianyou

  • WP409利用Xilinx FPGA打造出高端比特精度和周期精度浮點DSP算法實現方案

    WP409利用Xilinx FPGA打造出高端比特精度和周期精度浮點DSP算法實現方案: High-Level Implementation of Bit- and Cycle-Accurate Floating-Point DSP Algorithms with Xilinx FPGAs

    標簽: Xilinx FPGA 409 DSP

    上傳時間: 2013-10-21

    上傳用戶:huql11633

  • WP312-Xilinx新一代28nm FPGA技術簡介

    Xilinx Next Generation 28 nm FPGA Technology Overview Xilinx has chosen 28 nm high-κ metal gate (HKMG) highperformance,low-power process technology and combined it with a new unified ASMBL™ architecture to create a new generation of FPGAs that offer lower power and higher performance. These devices enable unprecedented levels of integration and bandwidth and provide system architects and designers a fully programmable alternative to ASSPs and ASICs.

    標簽: Xilinx FPGA 312 WP

    上傳時間: 2013-12-07

    上傳用戶:bruce

主站蜘蛛池模板: 兴义市| 礼泉县| 泽库县| 同心县| 石家庄市| 湘乡市| 闵行区| 富锦市| 毕节市| 叙永县| 左云县| 平顺县| 白玉县| 绥宁县| 霍城县| 繁峙县| 广元市| 神木县| 梨树县| 西华县| 镶黄旗| 东丰县| 陇南市| 廉江市| 犍为县| 高州市| 江北区| 南靖县| 根河市| 贵南县| 台中县| 改则县| 夏津县| 四子王旗| 龙口市| 隆尧县| 浦城县| 彰化县| 太湖县| 梁河县| 固始县|