The super-junction structure, which has P-type pillar layers as shown left, realizes high withstand voltage and ON-resistance lower than the conventional theoretical limit of silicon.
標(biāo)簽: 場(chǎng)效應(yīng)管 產(chǎn)品指南
上傳時(shí)間: 2014-12-31
上傳用戶:qwer0574
注:1.這篇文章斷斷續(xù)續(xù)寫了很久,畫圖技術(shù)也不精,難免錯(cuò)漏,大家湊合看.有問題可以留言. 2.論壇排版把我的代碼縮進(jìn)全弄沒了,大家將代碼粘貼到arduino編譯器,然后按ctrl+T重新格式化代碼格式即可看的舒服. 一、什么是PWM PWM 即Pulse Wavelength Modulation 脈寬調(diào)制波,通過調(diào)整輸出信號(hào)占空比,從而達(dá)到改 變輸出平均電壓的目的。相信Arduino 的PWM 大家都不陌生,在Arduino Duemilanove 2009 中,有6 個(gè)8 位精度PWM 引腳,分別是3, 5, 6, 9, 10, 11 腳。我們可以使用analogWrite()控 制PWM 腳輸出頻率大概在500Hz 的左右的PWM 調(diào)制波。分辨率8 位即2 的8 次方等于 256 級(jí)精度。但是有時(shí)候我們會(huì)覺得6 個(gè)PWM 引腳不夠用。比如我們做一個(gè)10 路燈調(diào)光, 就需要有10 個(gè)PWM 腳。Arduino Duemilanove 2009 有13 個(gè)數(shù)字輸出腳,如果它們都可以 PWM 的話,就能滿足條件了。于是本文介紹用軟件模擬PWM。 二、Arduino 軟件模擬PWM Arduino PWM 調(diào)壓原理:PWM 有好幾種方法。而Arduino 因?yàn)殡娫春蛯?shí)現(xiàn)難度限制,一般 使用周期恒定,占空比變化的單極性PWM。 通過調(diào)整一個(gè)周期里面輸出腳高/低電平的時(shí)間比(即是占空比)去獲得給一個(gè)用電器不同 的平均功率。 如圖所示,假設(shè)PWM 波形周期1ms(即1kHz),分辨率1000 級(jí)。那么需要一個(gè)信號(hào)時(shí)間 精度1ms/1000=1us 的信號(hào)源,即1MHz。所以說,PWM 的實(shí)現(xiàn)難點(diǎn)在于需要使用很高頻的 信號(hào)源,才能獲得快速與高精度。下面先由一個(gè)簡(jiǎn)單的PWM 程序開始: const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { if((bright++) == 255) bright = 0; for(int i = 0; i < 255; i++) { if(i < bright) { digitalWrite(PWMPin, HIGH); delayMicroseconds(30); } else { digitalWrite(PWMPin, LOW); delayMicroseconds(30); } } } 這是一個(gè)軟件PWM 控制Arduino D13 引腳的例子。只需要一塊Arduino 即可測(cè)試此代碼。 程序解析:由for 循環(huán)可以看出,完成一個(gè)PWM 周期,共循環(huán)255 次。 假設(shè)bright=100 時(shí)候,在第0~100 次循環(huán)中,i 等于1 到99 均小于bright,于是輸出PWMPin 高電平; 然后第100 到255 次循環(huán)里面,i 等于100~255 大于bright,于是輸出PWMPin 低電平。無 論輸出高低電平都保持30us。 那么說,如果bright=100 的話,就有100 次循環(huán)是高電平,155 次循環(huán)是低電平。 如果忽略指令執(zhí)行時(shí)間的話,這次的PWM 波形占空比為100/255,如果調(diào)整bright 的值, 就能改變接在D13 的LED 的亮度。 這里設(shè)置了每次for 循環(huán)之后,將bright 加一,并且當(dāng)bright 加到255 時(shí)歸0。所以,我們 看到的最終效果就是LED 慢慢變亮,到頂之后然后突然暗回去重新變亮。 這是最基本的PWM 方法,也應(yīng)該是大家想的比較多的想法。 然后介紹一個(gè)簡(jiǎn)單一點(diǎn)的。思維風(fēng)格完全不同。不過對(duì)于驅(qū)動(dòng)一個(gè)LED 來說,效果與上面 的程序一樣。 const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { digitalWrite(PWMPin, HIGH); delayMicroseconds(bright*30); digitalWrite(PWMPin, LOW); delayMicroseconds((255 - bright)*30); if((bright++) == 255) bright = 0; } 可以看出,這段代碼少了一個(gè)For 循環(huán)。它先輸出一個(gè)高電平,然后維持(bright*30)us。然 后輸出一個(gè)低電平,維持時(shí)間((255-bright)*30)us。這樣兩次高低就能完成一個(gè)PWM 周期。 分辨率也是255。 三、多引腳PWM Arduino 本身已有PWM 引腳并且運(yùn)行起來不占CPU 時(shí)間,所以軟件模擬一個(gè)引腳的PWM 完全沒有實(shí)用意義。我們軟件模擬的價(jià)值在于:他能將任意的數(shù)字IO 口變成PWM 引腳。 當(dāng)一片Arduino 要同時(shí)控制多個(gè)PWM,并且沒有其他重任務(wù)的時(shí)候,就要用軟件PWM 了。 多引腳PWM 有一種下面的方式: int brights[14] = {0}; //定義14個(gè)引腳的初始亮度,可以隨意設(shè)置 int StartPWMPin = 0, EndPWMPin = 13; //設(shè)置D0~D13為PWM 引腳 int PWMResolution = 255; //設(shè)置PWM 占空比分辨率 void setup() { //定義所有IO 端輸出 for(int i = StartPWMPin; i <= EndPWMPin; i++) { pinMode(i, OUTPUT); //隨便定義個(gè)初始亮度,便于觀察 brights[ i ] = random(0, 255); } } void loop() { //這for 循環(huán)是為14盞燈做漸亮的。每次Arduino loop()循環(huán), //brights 自增一次。直到brights=255時(shí)候,將brights 置零重新計(jì)數(shù)。 for(int i = StartPWMPin; i <= EndPWMPin; i++) { if((brights[i]++) == PWMResolution) brights[i] = 0; } for(int i = 0; i <= PWMResolution; i++) //i 是計(jì)數(shù)一個(gè)PWM 周期 { for(int j = StartPWMPin; j <= EndPWMPin; j++) //每個(gè)PWM 周期均遍歷所有引腳 { if(i < brights[j])\ 所以我們要更改PWM 周期的話,我們將精度(代碼里面的變量:PWMResolution)降低就行,比如一般調(diào)整LED 亮度的話,我們用64 級(jí)精度就行。這樣速度就是2x32x64=4ms。就不會(huì)閃了。
上傳時(shí)間: 2013-10-08
上傳用戶:dingdingcandy
超聲波傳感器適用于對(duì)大幅的平面進(jìn)行靜止測(cè)距。普通的超聲波傳感器測(cè)距范圍大概是 2cm~450cm,分辨率3mm(淘寶賣家說的,筆者測(cè)試環(huán)境沒那么好,個(gè)人實(shí)測(cè)比較穩(wěn)定的 距離10cm~2m 左右,超過此距離就經(jīng)常有偶然不準(zhǔn)確的情況發(fā)生了,當(dāng)然不排除筆者技術(shù) 問題。) 測(cè)試對(duì)象是淘寶上面最便宜的SRF-04 超聲波傳感器,有四個(gè)腳:5v 電源腳(Vcc),觸發(fā)控制端(Trig),接收端(Echo),地端(GND) 附:SRF 系列超聲波傳感器參數(shù)比較 模塊工作原理: 采用IO 觸發(fā)測(cè)距,給至少10us 的高電平信號(hào); 模塊自動(dòng)發(fā)送8個(gè)40KHz 的方波,自動(dòng)檢測(cè)是否有信號(hào)返回; 有信號(hào)返回,通過IO 輸出一高電平,高電平持續(xù)的時(shí)間就是超聲波從發(fā)射到返回的時(shí)間.測(cè)試距離=(高電平時(shí)間*聲速(340m/s))/2; 電路連接方法 Arduino 程序例子: constintTrigPin = 2; constintEchoPin = 3; floatcm; voidsetup() { Serial.begin(9600); pinMode(TrigPin, OUTPUT); pinMode(EchoPin, INPUT); } voidloop() { digitalWrite(TrigPin, LOW); //低高低電平發(fā)一個(gè)短時(shí)間脈沖去TrigPin delayMicroseconds(2); digitalWrite(TrigPin, HIGH); delayMicroseconds(10); digitalWrite(TrigPin, LOW); cm = pulseIn(EchoPin, HIGH) / 58.0; //將回波時(shí)間換算成cm cm = (int(cm * 100.0)) / 100.0; //保留兩位小數(shù) Serial.print(cm); Serial.print("cm"); Serial.println(); delay(1000); }
上傳時(shí)間: 2013-10-18
上傳用戶:星仔
中文版詳情瀏覽:http://www.elecfans.com/emb/fpga/20130715324029.html Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications. The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation. Some of the UltraScale architecture breakthroughs include: • Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50% • Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability • Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization • 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard • Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets • Greatly enhanced DSP and packet handling The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.
標(biāo)簽: UltraScale Xilinx 架構(gòu)
上傳時(shí)間: 2013-11-21
上傳用戶:wxqman
介紹高速電路的設(shè)計(jì)
標(biāo)簽: High-speed Digital Design 高速數(shù)字
上傳時(shí)間: 2013-12-02
上傳用戶:wentianyou
Abstract: Designers who must interface 1-Wire temperature sensors with Xilinx field-programmable gate arrays(FPGAs) can use this reference design to drive a DS28EA00 1-Wire slave device. The downloadable softwarementioned in this document can also be used as a starting point to connect other 1-Wire slave devices. The systemimplements a 1-Wire master connected to a UART and outputs temperature to a PC from the DS28EA00 temperaturesensor. In addition, high/low alarm outputs are displayed from the DS28EA00 PIO pins using LEDs.
標(biāo)簽: PicoBlaze Create Master Xilinx
上傳時(shí)間: 2013-11-12
上傳用戶:大三三
HDB3(High Density Bipolar三階高密度雙極性)碼是在AMI碼的基礎(chǔ)上改進(jìn)的一種雙極性歸零碼,它除具有AMI碼功率譜中無直流分量,可進(jìn)行差錯(cuò)自檢等優(yōu)點(diǎn)外,還克服了AMI碼當(dāng)信息中出現(xiàn)連“0”碼時(shí)定時(shí)提取困難的缺點(diǎn),而且HDB3碼頻譜能量主要集中在基波頻率以下,占用頻帶較窄,是ITU-TG.703推薦的PCM基群、二次群和三次群的數(shù)字傳輸接口碼型,因此HDB3碼的編解碼就顯得極為重要了[1]。目前,HDB3碼主要由專用集成電路及相應(yīng)匹配的外圍中小規(guī)模集成芯片來實(shí)現(xiàn),但集成程度不高,特別是位同步提取非常復(fù)雜,不易實(shí)現(xiàn)。隨著可編程器件的發(fā)展,這一難題得到了很好地解決。
上傳時(shí)間: 2013-11-01
上傳用戶:lindor
protel 99se 使用技巧以及常見問題解決方法:里面有一些protel 99se 特別技巧,還有我們經(jīng)常遇到的一些問題!如何使一條走線至兩個(gè)不同位置零件的距離相同? 您可先在Design/Rule/High Speed/Matched Net Lengths的規(guī)則中來新增規(guī)則設(shè)定,最后再用Tools/EqualizeNet Lengths 來等長化即可。 Q02、在SCHLIB中造一零件其PIN的屬性,如何決定是Passive, Input, I/O, Hi- Z,Power,…..?在HELP中能找到說明嗎?市面有關(guān) SIM?PLD?的書嗎?或貴公司有講義? 你可在零件庫自制零件時(shí)點(diǎn)選零件Pin腳,并在Electrical Type里,可以自行設(shè)定PIN的 屬性,您可參考臺(tái)科大的Protel sch 99se 里面有介紹關(guān)于SIM的內(nèi)容。 Q03、請(qǐng)問各位業(yè)界前輩,如何能順利讀取pcad8.6版的線路圖,煩請(qǐng)告知 Protel 99SE只能讀取P-CAD 2000的ASCII檔案格式,所以你必須先將P-CAD8.6版的格式轉(zhuǎn)為P-CAD 2000的檔案格式,才能讓Protel讀取。 Q04、請(qǐng)問我該如何標(biāo)示線徑大小的那個(gè)平方呢 你可以將格點(diǎn)大小設(shè)小,還有將字形大小縮小,再放置數(shù)字的平方位置即可。 Q05、請(qǐng)問我一次如何更改所有組件的字型 您可以點(diǎn)選其中一個(gè)組件字型,再用Global的方法就可以達(dá)成你的要求。
上傳時(shí)間: 2015-01-01
上傳用戶:yxgi5
Introduction to Xilinx Packaging Electronic packages are interconnectable housings for semiconductor devices. The major functions of the electronic packages are to provide electrical interconnections between the IC and the board and to efficiently remove heat generated by the device. Feature sizes are constantly shrinking, resulting in increased number of transistors being packed into the device. Today's submicron technology is also enabling large-scale functional integration and system-on-a-chip solutions. In order to keep pace with these new advancements in silicon technologies, semiconductor packages have also evolved to provide improved device functionality and performance. Feature size at the device level is driving package feature sizes down to the design rules of the early transistors. To meet these demands, electronic packages must be flexible to address high pin counts, reduced pitch and form factor requirements. At the same time,packages must be reliable and cost effective.
上傳時(shí)間: 2013-11-21
上傳用戶:不懂夜的黑
This application note describes how to implement the Bus LVDS (BLVDS) interface in the supported Altera ® device families for high-performance multipoint applications. This application note also shows the performance analysis of a multipoint application with the Cyclone III BLVDS example.
標(biāo)簽: Implementing LVDS 522 Bus
上傳時(shí)間: 2013-10-26
上傳用戶:蘇蘇蘇蘇
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1